
IA008: Computational Logic

2. First-Order Logic

Achim Blumensath
blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Basic Concepts

First-Order Logic

Syntax

▸ variables x, y, z, . . .

▸ terms x, f(t0, . . . , tn)
▸ relations R(t0, . . . , tn) and equality t0 = t1
▸ operators ∧,∨,¬,→,↔
▸ quantifiers ∃xφ, ∀xφ

Semantics

A ⊧ φ(ā) A = ⟨A,R0, R1, . . . , f0, f1, . . . ⟩

Examples

φ ∶= ∀x∃y[f(y) = x] ,
ψ ∶= ∀x∀y∀z[x ≤ y∧ y ≤ z→ x ≤ z] .

Examples

Structures

• graphsG = ⟨V,E⟩
E ⊆ V × V binary relation

•wordsW = ⟨W,≤,(Pa)a⟩
≤ ⊆ W ×W linear ordering

Pa ⊆ W positions with letter a

• transition systemsS = ⟨S,(Ea)a,(Pi)i⟩
Ea ⊆ V × V binary relation

Pi ⊆ V unary relation

Examples

Structures

• graphsG = ⟨V,E⟩
E ⊆ V × V binary relation

•wordsW = ⟨W,≤,(Pa)a⟩
≤ ⊆ W ×W linear ordering

Pa ⊆ W positions with letter a

• transition systemsS = ⟨S,(Ea)a,(Pi)i⟩
Ea ⊆ V × V binary relation

Pi ⊆ V unary relation

Examples

Structures

• graphsG = ⟨V,E⟩
E ⊆ V × V binary relation

•wordsW = ⟨W,≤,(Pa)a⟩
≤ ⊆ W ×W linear ordering

Pa ⊆ W positions with letter a

• transition systemsS = ⟨S,(Ea)a,(Pi)i⟩
Ea ⊆ V × V binary relation

Pi ⊆ V unary relation

Examples
Graphs G = ⟨V,E⟩, E ⊆ V × V

• ‘吀he graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y) → E(y, x)]

• ‘吀he graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z) → z = y]]

Examples
Graphs G = ⟨V,E⟩, E ⊆ V × V

• ‘吀he graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y) → E(y, x)]

• ‘吀he graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z) → z = y]]

Examples
Graphs G = ⟨V,E⟩, E ⊆ V × V

• ‘吀he graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y) → E(y, x)]

• ‘吀he graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z) → z = y]]

Examples
Graphs G = ⟨V,E⟩, E ⊆ V × V

• ‘吀he graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y) → E(y, x)]

• ‘吀he graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z) → z = y]]

Examples
Graphs G = ⟨V,E⟩, E ⊆ V × V

• ‘吀he graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y) → E(y, x)]

• ‘吀he graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z) → z = y]]

Examples
Graphs G = ⟨V,E⟩, E ⊆ V × V

• ‘吀he graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y) → E(y, x)]

• ‘吀he graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z) → z = y]]

Normal Forms
Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f(x̄)) (f new symbol).

Example

∀x∃y∃z[y > x∧ z < x]

∀x[f(x) > x∧ g(x) < x]
∃x∀y[y+ 1 ≠ x] ∀y[y+ 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f(y), u, g(y, u))]

吀heorem

Let φs be a Skolemisation of φ. 吀hen φs is satisfiable iff φ is
satisfiable.

Normal Forms
Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f(x̄)) (f new symbol).

Example

∀x∃y∃z[y > x∧ z < x]

∀x[f(x) > x∧ g(x) < x]
∃x∀y[y+ 1 ≠ x] ∀y[y+ 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f(y), u, g(y, u))]

吀heorem

Let φs be a Skolemisation of φ. 吀hen φs is satisfiable iff φ is
satisfiable.

Normal Forms
Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f(x̄)) (f new symbol).

Example

∀x∃y∃z[y > x∧ z < x] ∀x[f(x) > x∧ g(x) < x]

∃x∀y[y+ 1 ≠ x] ∀y[y+ 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f(y), u, g(y, u))]

吀heorem

Let φs be a Skolemisation of φ. 吀hen φs is satisfiable iff φ is
satisfiable.

Normal Forms
Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f(x̄)) (f new symbol).

Example

∀x∃y∃z[y > x∧ z < x] ∀x[f(x) > x∧ g(x) < x]
∃x∀y[y+ 1 ≠ x]

∀y[y+ 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f(y), u, g(y, u))]

吀heorem

Let φs be a Skolemisation of φ. 吀hen φs is satisfiable iff φ is
satisfiable.

Normal Forms
Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f(x̄)) (f new symbol).

Example

∀x∃y∃z[y > x∧ z < x] ∀x[f(x) > x∧ g(x) < x]
∃x∀y[y+ 1 ≠ x] ∀y[y+ 1 ≠ c]

∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f(y), u, g(y, u))]

吀heorem

Let φs be a Skolemisation of φ. 吀hen φs is satisfiable iff φ is
satisfiable.

Normal Forms
Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f(x̄)) (f new symbol).

Example

∀x∃y∃z[y > x∧ z < x] ∀x[f(x) > x∧ g(x) < x]
∃x∀y[y+ 1 ≠ x] ∀y[y+ 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)]

∀y∀u[R(c, y, f(y), u, g(y, u))]

吀heorem

Let φs be a Skolemisation of φ. 吀hen φs is satisfiable iff φ is
satisfiable.

Normal Forms
Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f(x̄)) (f new symbol).

Example

∀x∃y∃z[y > x∧ z < x] ∀x[f(x) > x∧ g(x) < x]
∃x∀y[y+ 1 ≠ x] ∀y[y+ 1 ≠ c]
∃x∀y∃z∀u∃v[R(x, y, z, u, v)] ∀y∀u[R(c, y, f(y), u, g(y, u))]

吀heorem

Let φs be a Skolemisation of φ. 吀hen φs is satisfiable iff φ is
satisfiable.

Normal Forms
Prenex normal form

Q0x0⋯Qnxnψ(x̄) , ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

replace ∀x̄∃yφ(x̄, y) by ∀x̄φ(x̄, f(x̄)) (f new symbol).

吀heorem

Let φs be a Skolemisation of φ. 吀hen φs is satisfiable iff φ is
satisfiable.

吀heorem of Herbrand
吀heorem of Herbrand

A formula ∃x̄φ(x̄) is valid if, and only if, there are terms t̄0, . . . , t̄n
such that the disjunction⋁i≤nφ(t̄i) is valid.

Corollary

A formula ∀x̄φ(x̄) is unsatisfiable if, and only if, there are terms
t̄0, . . . , t̄n such that the conjunction⋀i≤nφ(t̄i) is unsatisfiable.

Resolution

Substitution
Definition

A substitution σ is a function that replaces in a formula every free
variable by a term (and renames bound variables if necessary).
Instead of σ(φ)we also write φ[x↦ s, y↦ t] if σ(x) = s and
σ(y) = t.

Examples

(x = f(y))[x↦ g(x), y↦ c] = g(x) = f(c)
∃z(x = z+ z)[x↦ z] = ∃u(z = u+ u)

Unification
Definition

A unifier of two terms s(x̄) and t(x̄) is a pair of substitutions σ, τ
such that σ(s) = τ(t).
A unifier σ, τ ismost general if every other unifier σ′, τ′ can be
written as σ′ = ρ ○ σ and τ′ = υ ○ τ, for some ρ, υ.

Examples

s = f(x, g(x)) t = f(c, x) x↦ c x↦ g(c)
s = f(x, g(x)) t = f(x, y) x↦ x x↦ x

y↦ g(x)
x↦ g(x) x↦ g(x)

y↦ g(g(x))
s = f(x) t = g(x) unification not possible

Unification Algorithm
unify(s, t)
if s is a variable x then
if x already has some value u then
unify(u, t)

else
set x to t

else if t is a variable x then
if x already has some value v then
unify(s, v)

else
set x to s

else s = f(ū) and t = g(v̄)
if f = g then
forall i unify(ui, vi)

else
fail

Union-Find-Algorithm
3 7 values

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

variables

find ∶ variable→ value

▸ follows pointers to the root and creates shortcuts

union ∶ (variable × variable) → unit

▸ links roots by a pointer

Clauses

Definitions

▸ literal R(t̄) or ¬R(t̄)
▸ clause set of literals {P(s̄), R(t̄),¬S(ū)}

Example

CNF φ ∶= ∀x∀y[R(x, y) ∨ ¬R(x, f(x))] ∧ ∀y[¬R(f(y), y) ∨ P(y)]

(no existential quantifiers)

clauses {R(x, y) ,¬R(x, f(x))}, {¬R(f(y), y) , P(y)}

Clauses

Definitions

▸ literal R(t̄) or ¬R(t̄)
▸ clause set of literals {P(s̄), R(t̄),¬S(ū)}

Example

CNF φ ∶= ∀x∀y[R(x, y) ∨ ¬R(x, f(x))] ∧ ∀y[¬R(f(y), y) ∨ P(y)]

(no existential quantifiers)

clauses {R(x, y) ,¬R(x, f(x))}, {¬R(f(y), y) , P(y)}

Resolution

Resolution Step

Consider two clauses

C = {P(s̄), R0(t̄0), . . . , Rm(t̄m)}
C′ = {¬P(s̄′), S0(ū0), . . . , Sn(ūn)}

where s̄ and s̄′ have no common variables, and let σ, τ be the most
general unifier of s̄ and s̄′. 吀he resolvent of C and C′ is the clause

{R0(σ(t̄0)), . . . , Rm(σ(t̄m)), S0(τ(ū0)), . . . , Sn(τ(ūn))} .

Lemma

Let C be the resolvent of two clauses in Φ. 吀hen

Φ ⊧ Φ∪ {C} .

Example
φ = ∀x∀y[P(x) ∧ x ≤ y→ P(y)] ∧ ∀x[x ≤ f(x)] ∧ Pc∧ ¬P(f(c))

{¬P(x), x ≰ y,P(y)} {x ≤ f(x)} {P(c)} {¬P(f(c))}

Example
φ = ∀x∀y[P(x) ∧ x ≤ y→ P(y)] ∧ ∀x[x ≤ f(x)] ∧ Pc∧ ¬P(f(c))

{¬P(x), x ≰ y,P(y)} {x ≤ f(x)} {P(c)} {¬P(f(c))}

{¬P(z), P(f(z))}

{P(f(c))}

∅

x↦ z
y↦ f(z)

x↦ z

z↦ c

吀heResolutionMethod
吀heorem

吀he resolution method for first-order logic (without equality) is
sound and complete.

吀heorem

Satisfiability for first-order logic is undecidable.

Satisfiability
吀heorem

Satisfiability for first-order logic is undecidable.

Proof
Turing machineM= ⟨Q,Σ,Δ, q0, F+, F−⟩, non-deterministic

Q set of states
Σ tape alphabet
Δ set of transitions ⟨p, a, b,m, q⟩ ∈ Q× Σ × Σ × {−1,0, 1} × Q
q0 initial state
F+ accepting states
F− rejecting states

By adding a counter toMwe may assume that every run ofM
terminates.

Proof
Turing machineM= ⟨Q,Σ,Δ, q0, F+, F−⟩, non-deterministic

Q set of states
Σ tape alphabet
Δ set of transitions ⟨p, a, b,m, q⟩ ∈ Q× Σ × Σ × {−1,0, 1} × Q
q0 initial state
F+ accepting states
F− rejecting states

Encoding in FO

Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t, k) letter a in field k at time t
s successor function s(n) = n+ 1
0 zero

φw ∶= ADM ∧ INIT ∧ TRANS ∧ ACC

Proof
Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t, k) letter a in field k at time t
s successor function s(n) = n+ 1
0 zero

Admissibility formula

ADM ∶= ∀t⋀
p≠q

¬[Sp(t) ∧ Sq(t)] unique state

∧ ∀t∀k⋀
a≠b

¬[Wa(t, k) ∧Wb(t, k)] unique letter

Proof
Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t, k) letter a in field k at time t
s successor function s(n) = n+ 1

Initialisation formula for input: a0 . . . an−1

INIT ∶= Sq0(0) initial state

∧ h(0) = 0 initial head position

∧ ⋀
k<n

Wak
(0, k) ∧ ∀kW◻(0, k+ n)] initial tape content

(here k ∶= s(s(⋯s(0))) and k+ n ∶= sn(k))

Acceptance formula

ACC ∶= ∀t ⋀
q∈F−

¬Sq(t) no rejecting states

Proof
Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t, k) letter a in field k at time t
s successor function s(n) = n+ 1

Transition formula

TRANS ∶= ∀t ⋁
⟨p,a,b,m,q⟩∈Δ

[Sp(t) ∧Wa(t, h(t)) ∧ Sq(s(t)) ∧
h(s(t)) = h(t) +m∧Wb(s(t), h(t))]

∧ ∀t∀k⋀
a∈Σ
[k ≠ h(t) → [Wa(t, k) ↔ Wa(s(t), k)]]

where

y = x+m ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y = s(x) ifm = 1 ,
y = x ifm = 0 ,
s(y) = x ifm = −1 .

Linear Resolution and Horn Formulae
Horn formulae

A Horn formulae is a formula in CNF where each clause contains at
most one positive literal.

吀heorem

A set of Horn clauses is unsatisfiable if, and only if, one can use
linear resolution to derive the empty clause from it.

SLD Resolution

Linear resolutionwhere the clauses are sequences instead of sets
and we always resolve the le昀tmost literal of the current clause.

