|Ao08: Computational Logic
4. Deduction

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Tableaux

Tableau Proofs

For simplicity: first-order logic without equality

Statements ¢ true or ¢ false

Rule
Qo
Yo To e Um Tm
90 Uo Sm Um

Interpretation

If @ o is possible thensois ¢; tj,..., J; vu;, for some i.

Tableaux

Construction

A tableau for a formula ¢ is constructed as follows:

| 2

| 2

| 2

| 2

| 2

start with ¢ false

choose a branch of the tree

choose a statement ¢ value on the branch
choose a rule with head ¢ value

add it at the bottom of the branch

repeat until every branch contains both statements ¢ true and
¢ false for some formula ¢

- true - false
[0} szlse (0} tlrue
@© AP true @ A P false @V true o Vv false
@ true o false y false @ true Y true o false
1] tlrue Y false
@ — true @ — ¢ false @ < ¢ true ¢ < ¢ false
o false ¢ true [0) tlrue o true o false @ true o false
U] f:[\lse (U] tlrue 1] f:Llse y false Y true
VX true Vxo false Ix¢ true Ix¢ false

@[x —t]true @[x+—c|false @[x~ c]true

¢ a new constant symbol, t an arbitrary term

@[x — t] false

Example

(AVvB) - —(-A A-B) false -(-AA-B) > (AvB) false

Example

(AVvB) - —(-A A-B) false -(-AA-B) > (AvB) false
AV B true —~(-A A -B) true
ey |
(/\|) false A v B false
—A A =B true
| A false
—A true ‘
| B false
—-B true ‘
| —-A A B false
A false
| -A false -B false
B false
A true B true

A true B true

Example

IxVyR(x,y) - Vy3IxR(x, y) false VxR(x, x) = Vx3yR(f(x), y) false

Example
IxVyR(x,y) - Vy3IxR(x, y) false
IxVyR(x, y) true
Vy3xR(x, y) false
VyR(c, y) true
3xR(x, d) false
R(c, d) true

R(c, d) false

VxR(x, x) = Vx3yR(f(x), y) false

VXR(x, x) true

Vx3JyR(f(x), y) false

JyR(f(c), y) false

R(f(c), f(c)) false

R(f(c), f(c)) true

Soundness and Completeness

Theorem

A first-order formula ¢ is valid if, and only if, there exists a tableau T
for ¢ false where every branch is contradictory.

Soundness and Completeness

Theorem

A first-order formula ¢ is valid if, and only if, there exists a tableau T
for ¢ false where every branch is contradictory.

Corollary

Validity of first-order formulae is recursively enumerable, but not
decidable.

Soundness and Completeness

Theorem

A first-order formula ¢ is valid if, and only if, there exists a tableau T
for ¢ false where every branch is contradictory.

Terminology

A tableau for a statement ¢ value is a tableau T where the root is
labelled with ¢ value.

A branch 8 is contradictory if it contains both statements ¢ true
and ¢ false, for some formula ¢.

A branch 8 is consistent with a structure 2l if
» A = ¢, for all statements ¢ true on 8 and
» A & ¢, for all statements ¢ false on 8.

A branch 8 is complete if, for every atomic formula g, it contains
one of the statements ¢ true or ¢ false.

Proof Sketch: Soundness

Lemma

If 8 is consistent with 2{ and we extend the tableau by applying a
rule, the new tableau has a branch 8’ extending 8 that is consistent
with L.

Corollary

If 2 # @, then every tableau for ¢ false has a branch that is not
contradictory.

Corollary

If ¢ is not valid, there is no tableau for ¢ false where all branches are
contradictory.

Proof Sketch: Completeness

Lemma

If every tableau for ¢ false has a non-contradictory branch, there
exists a tableau for ¢ false with a branch 6 that is complete and
non-contradictory.

Lemma

If a branch 8 is complete and non-contradictory, there exists a
structure 2 such that 8 is consistent with L.

Corollary

If every tableau for ¢ false has a non-contradictory branch, there
exists a structure 20 with 2 # ¢.

Natural Deduction

Proof Calculi

Notation
$1,.-., Yo+ @ @ isprovable with assumptions ¢, ..., ¢,

Proof Calculi

Notation
$1,.-., Yo+ @ @ isprovable with assumptions ¢, ..., ¢,

@ is provable if + ¢.

Proof Calculi

Notation
$1,.-., Yo+ @ @ isprovable with assumptions ¢, ..., ¢,

@ is provable if + ¢.
Rules

=@, ... Th+=¢n premises
Ary conclusion

QLA APn =

Proof Calculi

Notation
$1,.-., Yo+ @ @ isprovable with assumptions ¢, ..., ¢,

@ is provable if + ¢.
Rules

=@, ... Th+=¢n premises
Ary conclusion

(PIA"'/\(PH:(P

Axiom

rule without premises
A~y

Proof Calculi

Notation
$1,.-., Yo+ @ @ isprovable with assumptions ¢, ..., ¢,

@ is provable if + ¢.

Rules
i@ ... Th+ remises
: (PlA Y e Eonclusion e/ =1
Axiom
Ay rule without premises
Remark

Tableaux speak about possibilities while Natural Deduction proofs
speak about necesseties.

Proof Calculi

Derivation

[-¢ Ao - Yo
A -y, [’
S+

tree of rules

Natural Deduction (propositional part)

(Ir)

=7
¢ A-y¢

(1n) [A-@ony

(I\/) rl—‘(pk(P r,ﬁ(Pl—lI)

[—pVvy [—pVvy
[Lo-1

[--¢

(1)

¢ T+-0¢
M1
r,o+
(IQ)I'»—(P—(P
=9

(I)R¢Fw Aro
- [Ar @ <y

(1)

A
(X)ﬂwkw

oAy F'-ony
(En) —
=@ =y

(E) r-ovy A er9 A,p+3
v r,A A9

[,-p+1

(E-) [

M1
0]

(Ev)

[+ A-@ —
(E-) ¢rﬂk—¢ :
) Y

o A-@p< ¢

() =P h=E (roym)

Examples

F(o V)= (=9 A-p)

Examples

QAP =@ AP
oo P A=Y ¢

PVY, —PpA-PEPVY P oA L P, oA L

PVY,-pA-P L
PVYPE=(=pA-y)
F(oVv)= (=0 A-p)

Natural Deduction (quantifiers and equality)

[+ @[x~t] -3xe A @[x—c]+y
(|3)—r (E3)
- dxo LA~y
I~ o[x+~c] [+ Vxe
ly) —— Ey) —MMM——
(Iv) [+ Vxe (v)l'l—(p[xn—>t]
[Fs=t Ar@|x—s
() F-t=t (E-) r,A ?]
= ’ '_(P[X'_’t]

c a new constant symbol, s, t arbitrary terms

Examples

s=tr-t=s

Examples

s=tF-s=t FS=s (E,)
s=trt=s -

s=tr-t=s

Examples

s=tr-t=s

s=tF-s=t FS=s (E,)
s=trt=s -

s=t, t=urs=u

Examples

s=tr-t=s

s=tF-s=t FS=s (E,)
s=trt=s -

t=urt=u s=tF-s=t (E_)

s=t, t=urs=u
s=t t=urs=u

Examples

s=tr-t=s

s=tF-s=t FS=s (E,)
s=trt=s -

t=urt=u s=tF-s=t (E_)

s=t, t=urs=u
s=t t=urs=u

IxVyR(x,y) + YyIxR(x,y)

Examples

s=tF-s=t FS=s (E,)
s=trt=s -

s=tr-t=s

t=urt=u s=tF-s=t (E_)
s=t, t=urs=u -

s=t, t=urs=u

IxVyR(x,y) - Vy3xR(x,y) VyR(c,y) + VyR(c,y) (Ev)
VyR(c,y) r R(c, d) (IH\’)

VyR(c,y) + 3xR(x, d) (1v)

IxVyR(x,y) - IxVyR(x,y) VyR(c,y) + Vy3xR(x,y) (E5)
IxVyR(x,y) - YyIxR(x,y) 3

Soundness and Completeness

Theorem

A formula ¢ is provable using Natural Deduction if, and only if, it is
valid.

Corollary
The set of valid first-order formulae is recursively enumerable.

Isabelle/HOL

Isabelle/HOL

Proof assistant designed for software verification.

General structure

theory T
imports T1 ... Tn
begin
declarations, definitions, and proofs
end

Syntax

Two levels:
» the meta-language (Isabelle) used to define theories,
» the logical language (HOL) used to write formulae.

To distinguish the levels, one encloses formulae of the logical
language in quotes.

datatype 'a list = Nil "L
| Cons 'a "'a list" (infixr "#" 65)

primrec app :: "'a list => 'a list => 'a list"
(infixr "@" 65)

where

"[1@eys = ys" |

"(x # xs) @ ys

x # (xs @ ys)"

Logical Language
Types

| 2

| 2

| 2

| 2

base types: bool, nat, int,...

type constructors: a list, a set,...
function types: a = 8

type variables: '3, 'b,...

Terms Formulae
» application: f xy, x +y,... » terms of type bool
» abstraction: Ax.t » boolean operations
> type annoation: t: « BEAA i
» if b thentelseu » quantifiers Vx, 3x
» letx=tinu » predicates ==, <,...

case x of po = to || pn = tn

Basic Types

datatype bool = True | False

fun conj :: "bool => bool => bool" where
"conj True True = True" |
"conj _ _ = False"

datatype nat = @ | Suc nat

fun add :: "nat => nat => nat" where
"add 0 n=n"|
"add (Suc m) n = Suc (add m n)"

lemma add_02: "add m @ = m"
apply (induction m)

apply (auto)

done

Proofs

lemma add_02: "add m @ = m"

Proofs

lemma add_02: "add m @ = m"

apply (induction m)

Proofs

lemma add_02: "add m @ = m"

apply (induction m)

l.add 0 0 = 0
2. Am. add m @ = m ==> add (Suc m) @ = Suc m

Proofs

lemma add_02: "add m @ = m"

apply (induction m)

l.add 0 0 = 0
2. Am. add m @ = m ==> add (Suc m) @ = Suc m

apply (auto)

datatype 'a list = Nil "1™

fun app ::

where
"[]@ys

"(x # xs) @y
fun rev :: "'
"rev []

"rev (x # xs)

a

S

a

| Cons 'a "'a list" (infixr
list => 'a list => 'a list"
(infixr

= ys" |
=x # (xs @ ys)"

list => 'a list" where
=[1" |
= (rev xs) @ (x # [D"

" 65)

"e" 65)

theorem rev_rev [simp]: "rev (rev xs) = xs

theorem rev_rev [simp]: "rev (rev xs) = xs"

apply(induction xs)

theorem rev_rev [simp]: "rev (rev xs) = xs"

apply(induction xs)
1. rev (rev Nil) = Nil
2. Ax1 xs. rev (rev xs) = xs ==>
rev (rev (Cons x1 xs)) = Cons x1 xs

theorem rev_rev [simp]: "rev (rev xs) = xs"

apply(induction xs)

1. rev (rev Nil) = Nil
2. Ax1 xs. rev (rev xs) = xs ==>
rev (rev (Cons x1 xs)) = Cons x1 xs

apply(auto)

theorem rev_rev [simp]: "rev (rev xs) = xs"

apply(induction xs)
1. rev (rev Nil) = Nil
2. Ax1 xs. rev (rev xs) = xs ==>
rev (rev (Cons x1 xs)) = Cons x1 xs
apply(auto)
1. Ax1 xs.
rev (rev xs) = xs ==
rev (rev xs @ Cons x1 Nil) = Cons x1 xs

lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)

apply(auto)
done

lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)

apply(auto)
done

lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"
apply(induction xs)
apply(auto)

1. Ax1 xs.
rev (xs @ ys) = rev ys @ rev xs ==>
(rev ys @ rev xs) @ Cons x1 Nil =
rev ys @ (rev xs @ Cons x1 Nil)

lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)

apply(auto)
done

lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"
apply(induction xs)
apply(auto)

1. Ax1 xs.
rev (xs @ ys) = rev ys @ rev xs ==>
(rev ys @ rev xs) @ Cons x1 Nil
rev ys @ (rev xs @ Cons x1 Nil)

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply (induction xs)

apply (auto)
done

lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induction xs)

apply(auto)
done

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induction xs)

apply(auto)
done

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induction xs)

apply(auto)

done

theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induction xs)

apply(auto)

done

end

Nonmonotonic Logic

Negation as Failure
Goal

Develop a proof calculus supporting Negation as Failure as used in
Prolog.

Monotonicity

Ordinary deduction is monotone: if we add new assumption, all
consequences we have already derived remain. More information
does not invalidate already made deductions.

Non-Monotonicity

Negation as Failure is non-monotone:

Pimplies -Q but P, Q does notimply -Q.

Default Logic

Rule

8 a; assumptions
L B; restraints
y consequence

Derive y provided that we can derive a,, ..., @y, but none of
60, e ey Bn.

Example

bird(x) : penguin(x) ostrich(x)
can_fly(x)

Semantics

Definition
A set @ of formulae is consistent with respect to a set of rules R if,
for every rule

®o ... Qm: 6o ... By P

suchthata,,...,ame®andB,,..., 8, ¢ ®,wehavey e ®.

Note

If there are no restraints 8;, consistent sets are closed under
intersection.
= There is a unique smallest such set, that of all provable formulae.

If there are restraints, this may not be the case. Formulae that
belong to all consistent sets are called secured consequences.

Examples
The system

has a unique consistent set {a, 8}.

The system

has consistent sets

{a,8}, {av} {a6y}.

