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Definition

The quantifier rank of a formula ¢ is the nesting depth of
quantifiers in ¢.

qr(s=t):=o, qr(e A ¢) == max{qr(e), gr(y)},
qr(Rt) := o, qr(e v ¢) := max{qr(e), gr(y)},
qr(3Ixe) :==1+qr(e), qr(-¢) :=qr(¢),

qr(Vxe) :=1+qr(¢p).

Example

qr(VxHyR(x,y)) =2,
qr(Vx[P(x) v Q(x)] AVz[3yR(y, z) v EIyR(z,y)]) =2,
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Quantifier rank

Lemma

Up to logical equivalence, there are only finitely many formulae of
quantifier rank at most m with free variables x.
(For a fixed signature 3 that is finite and relational.)

Proof

Induction on m.

(m = o) Every quantifier-free formula is a boolean combination of
atomic formulae.

There are only finitely many atomic formulae with variables x.

There are only finitely many different boolean combinations (e.g., we
can use disjunctive normal form).

(m > o) Every such formula is a boolean combination of formulae of
the form 3ye(x, y) where gr(¢) < m.

By inductive hypothesis, there are only finitely many ¢(%, y).

There are only finitely many different boolean combinations.
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Back-and-forth equivalence

m-equivalence

Ad=nB,b :iff Ar @) < Beob),
forall (%) withqr(¢) <m.

Lemma
=m is an equivalence relation with finitely many classes.

Lemma

A, 0=m B, b
if, and only if,
«forallc e A, exists d € Bwith 2, ac =, B, bd and
«foralld € B, exists c € A with 2, ac =,,, B, bd.
(‘back-and-forth conditions’)
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Proof (<)

Suppose 2l = Ix¢(a, x) with qr(¢p) < m.

= exists c e Awith 2 = ¢(a, ¢).

By assumption, exists d € B with 2, ac =, B, bd.
=B = ¢(b,d)

=B = 3Ix¢(b, x)
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Proof (=)
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Proof (=)

Fix c € A.

0:={vxy)ar(p)<m, A= y(ac)}
d:=A0

=A=9(a,c)

= A= 3yI(a,y)

By assumption, B = 3y9(b, y).

= exists d € B with B = 9(b, d)

= A, ac = B, bd
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Ehrenfeucht-Fraissé Games
Game G (2, a;%B,b)
Players: Spoiler and Duplicator

m rounds:
- Spoiler picks an element of one structure.
- Duplicator picks an element of the other structure.

Winning: 2, a¢ =, B,bd (¢ €A™, d € B™ picked elements)

Theorem
20, @ =m B, b if, and only if, Duplicator wins G, (2, a; B, b)
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Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Proof (=)
For 2™~* < k < 2™, construct ¢, (x, y) with qr(¢;) = m stating that
x <y and there are at least k elements between x and y.

Po(X,y) =x<y,
k(% Y) = 32[@[(k-1)/21(% 2) A P (k=2)/2)(z ¥)].-

Construct ¢, with gr(¢, ) = m stating that there are at least k
elements.
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Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Proof (<) induction on m

(m = o) trivial

(m > o) If Spoiler chooses a € A Duplicator answers with b € B such
that

(#elements < a) =,m-_, (#elements<b),

(#elements > a) =,m-1_, (#elements >b).

(where i = jmeansi=jori,j>k)
By inductive hypothesis, Duplicator can then continue the game for
m — 1 rounds.



Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Corollary
There does not exist an FO-formula ¢ such that

(A, <)=q@ iff |A]iseven,

for all finite linear orders.
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Word structures

We can represent u = a,...0a,-, € 2" as a structure
({o,...,n =1}, <, (P)ees) with Pei={i<n|ai=c}.

Lemma

uzmu' and vzp,v' = uvzpu'v.



Words

Word structures

We can represent u = a,...0a,-, € 2" as a structure
({o,...,n =1}, <, (P)ees) with Pei={i<n|ai=c}.
Lemma

uzmu' and vzp,v' = uvzpu'v.

Corollary
For L ¢ >* FO-definable, there exists n € N such that

uw'wel < uv"wel, forallu,v,weZ*.
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Examples

The following languages are not first-order definable.
+ (aa)”
«{a"b" |neN}

« all correctly parenthesised expressions over the alphabet () x
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Example
« “The set X is empty.”
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Monadic Second-Order Logic

Syntax

- element variables: x, y, z, . ..

. setvariables: X, Y, Z, ...

- atomic formulae: R(x), x =y, x € X
« boolean operations: A, v, -, >, <

- quantifiers: 3x, Vx, 3X, VX

Example
« “The set X is empty.”
—-3x[x € X]
Xcy”
Vz[zeX >z € Y]
« “There exists a path from x to y.”
VZ[xeZAVuVv[ueZAE(uv) >veZ]>yeZ]
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Back-and-Forth Equivalence
m-equivalence
A P,a=M098 Qb :iff Aroe(P,a) < BE=eQ b)
forall (X, x) with qr(¢) <m.

Ehrenfeucht-Fraissé Game

Both players choose an element or a set in each round.

Lemma

_MSO 7/ _MSO s _MSO 7 1
us,"u o oand vt v = uvs>ulv.
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Automata

Given ¢ of quantifier rank m, construct Ay = (Q, %, 6, qo, F)
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Automata

Given ¢ of quantifier rank m, construct Ay = (Q, %, 6, qo, F)

Idea: Given w = a---a,_, compute =M59_classes

[€]m, [@o]m, [a0a1]m, ..., [@0@1-Gn-1]m.
e Q= 3*/=MS0
*qo = [€]m
*8([w]m, c) := [wc]m
cFe={{w]m|wEe}
Theorem
Ay accepts aword w € ™ if, and only if, w = ¢.

Corollary

¢ is satisfiable (by a finite word) if, and only if, Ay accepts some
word.
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Automata
Given A =(Q, %, 8, g0, F) construct ¢ 4.

@4 :=3(Zg)qeq[ADM A INIT A TRANS A ACC|

ADM :=Vx A\ =(x € Z, Ax e Zg)
p#q

ACC:=\/[last € Z4]
qeF

INIT := \/ [Pc(first) Afirst € Zsg,,c)]
ceX
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Corollary
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Automata

Corollary
Alanguage L ¢ =™ is regular if, and only if, it is MSO-definable.

Example
L={a"b" | neN}isnotregular.

Proof

Suppose that ¢ € MSO defines L.
Setm :=qr(¢p).

There exist i < k with a’ =MSO gk,
a'b el

=ab ke
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Automata

Corollary
Alanguage L ¢ =™ is regular if, and only if, it is MSO-definable.

Example

L={a"b" | neN}isnotregular.
Proof

Suppose that ¢ € MSO defines L.
Setm :=qr(¢p).

There exist i < k with a’ =MSO gk,
a'b el

=ab ke

= akbi E @

= akbi e L Contradiction.
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The Theorem of Gaifman

Gaifman graph
G(A):=(AE) where E:={(cjcj)|CeR, ci*cj}
d(x, y) distance in G(2l)

Relativisation g(") (x)
replace 3y by 3y[d(x,y)<rna9]
replace Vy3 by Vy[d(x,y)<r—3]

Basic local sentence

@ =30 Xna[ A d(xi, xj) 2 2r A A\ 907 (x7)]

i#j i<n
Theorem
Every FO-formula ¢ (%) is equivalent to a boolean combination of

« basic local sentences and
- formulae of the form ¢(") (x;).
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Proof

Suppose that 20 and B satisfy the same basic local sentences up to
gr h(r).
N(a,r):={c|d(c, a;j) <rforsomei}

Claim  N(a,7"),d=4(r N(b,7"),b = A,a= B,b

Using this claim, we can proof the theorem as follows.
Let r := qr(¢). Itis sufficient to show that

e(%) =V {xaa(x) [A=oe(a)},
where
Xa,a(%) = A\ O A\ Og,5(%),

Og = { ¢ | Y basiclocal, qr(y) <h(r), A=y},
0y = {97 () | ar(p) <g(r), Ak p(a) }.
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9 (%) = Nd(xi,xj) > 4-7" A~ A[N(xi, 77) =9(ry N(c, 7]
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Case2b B = -3x9;,,(X) (cis at medium distance from the &)
= A= -3IxYy . (%)
= ceN(a,7"") satisfies 2- 7" < d(c,a;) <6-7"
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