|A008: Computational Logic
5. Ehrenfeucht-Fraissé Games

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Quantifier rank

Definition

The quantifier rank of a formula ¢ is the nesting depth of
quantifiers in ¢.

Quantifier rank

Definition

The quantifier rank of a formula ¢ is the nesting depth of
quantifiers in ¢.

qr(s=t):=o, qr(e A ¢) == max{qr(e), gr(y)},
qr(Rt) := o, qr(e v ¢) := max{qr(e), gr(y)},
qr(3Ixe) :==1+qr(e), qr(-¢) :=qr(¢),

qr(Vxe) :=1+qr(¢p).

Quantifier rank

Definition

The quantifier rank of a formula ¢ is the nesting depth of
quantifiers in ¢.

qr(s=t):=o, qr(e A ¢) == max{qr(e), gr(y)},
qr(Rt) := o, qr(e v ¢) := max{qr(e), gr(y)},
qr(3Ixe) :==1+qr(e), qr(-¢) :=qr(¢),

qr(Vxe) :=1+qr(¢p).

Example

qr(VxHyR(x,y)) =2,
qr(Vx[P(x) v Q(x)] AVz[3yR(y, z) v EIyR(z,y)]) =2,

Quantifier rank

Lemma

Up to logical equivalence, there are only finitely many formulae of
quantifier rank at most m with free variables x.
(For a fixed signature 3 that is finite and relational.)

Proof

Quantifier rank

Lemma

Up to logical equivalence, there are only finitely many formulae of
quantifier rank at most m with free variables x.
(For a fixed signature 3 that is finite and relational.)

Proof

Induction on m.

Quantifier rank

Lemma

Up to logical equivalence, there are only finitely many formulae of
quantifier rank at most m with free variables x.
(For a fixed signature 3 that is finite and relational.)

Proof

Induction on m.
(m = o) Every quantifier-free formula is a boolean combination of
atomic formulae.

Quantifier rank

Lemma

Up to logical equivalence, there are only finitely many formulae of
quantifier rank at most m with free variables x.
(For a fixed signature 3 that is finite and relational.)

Proof

Induction on m.

(m = o) Every quantifier-free formula is a boolean combination of
atomic formulae.

There are only finitely many atomic formulae with variables x.

Quantifier rank

Lemma

Up to logical equivalence, there are only finitely many formulae of
quantifier rank at most m with free variables x.

(For a fixed signature 3 that is finite and relational.)

Proof

Induction on m.

(m = o) Every quantifier-free formula is a boolean combination of
atomic formulae.

There are only finitely many atomic formulae with variables x.

There are only finitely many different boolean combinations (e.g., we
can use disjunctive normal form).

Quantifier rank

Lemma

Up to logical equivalence, there are only finitely many formulae of
quantifier rank at most m with free variables x.

(For a fixed signature 3 that is finite and relational.)

Proof

Induction on m.

(m = o) Every quantifier-free formula is a boolean combination of
atomic formulae.

There are only finitely many atomic formulae with variables x.

There are only finitely many different boolean combinations (e.g., we
can use disjunctive normal form).

(m > o) Every such formula is a boolean combination of formulae of
the form 3ye(x, y) where gr(¢) < m.

Quantifier rank

Lemma

Up to logical equivalence, there are only finitely many formulae of
quantifier rank at most m with free variables x.
(For a fixed signature 3 that is finite and relational.)

Proof

Induction on m.

(m = o) Every quantifier-free formula is a boolean combination of
atomic formulae.

There are only finitely many atomic formulae with variables x.

There are only finitely many different boolean combinations (e.g., we
can use disjunctive normal form).

(m > o) Every such formula is a boolean combination of formulae of
the form 3ye(x, y) where gr(¢) < m.

By inductive hypothesis, there are only finitely many ¢(%, y).

Quantifier rank

Lemma

Up to logical equivalence, there are only finitely many formulae of
quantifier rank at most m with free variables x.
(For a fixed signature 3 that is finite and relational.)

Proof

Induction on m.

(m = o) Every quantifier-free formula is a boolean combination of
atomic formulae.

There are only finitely many atomic formulae with variables x.

There are only finitely many different boolean combinations (e.g., we
can use disjunctive normal form).

(m > o) Every such formula is a boolean combination of formulae of
the form 3ye(x, y) where gr(¢) < m.

By inductive hypothesis, there are only finitely many ¢(%, y).

There are only finitely many different boolean combinations.

Back-and-forth equivalence

m-equivalence

A azm B, b :iff Ar (@) < B oeb),
forall (%) withqr(¢) <m.

Back-and-forth equivalence

m-equivalence

A azm B, b :iff Ar (@) < B oeb),
forall (%) withqr(¢) <m.

Lemma

=m is an equivalence relation with finitely many classes.

Back-and-forth equivalence

m-equivalence

Ad=nB,b :iff Ar @) < Beob),
forall (%) withqr(¢) <m.

Lemma
=m is an equivalence relation with finitely many classes.

Lemma

A, 0=m B, b
if, and only if,
«forallc e A, exists d € Bwith 2, ac =, B, bd and
«foralld € B, exists c € A with 2, ac =,,, B, bd.
(‘back-and-forth conditions’)

Back-and-forth equivalence

Proof (<)
Suppose 2l = Ix¢(a, x) with qr(¢p) < m.

Back-and-forth equivalence

Proof (<)
Suppose 2l = Ix¢(a, x) with qr(¢p) < m.
= exists c e Awith 2 = ¢(a, ¢).

Back-and-forth equivalence

Proof (<)

Suppose 2l = Ix¢(a, x) with qr(¢p) < m.

= exists c e Awith 2 = ¢(a, ¢).

By assumption, exists d € B with 2, ac =, B, bd.

Back-and-forth equivalence

Proof (<)

Suppose 2l = Ix¢(a, x) with qr(¢p) < m.

= exists c e Awith 2 = ¢(a, ¢).

By assumption, exists d € B with 2, ac =, B, bd.
=B = ¢(b,d)

Back-and-forth equivalence

Proof (<)

Suppose 2l = Ix¢(a, x) with qr(¢p) < m.

= exists c e Awith 2 = ¢(a, ¢).

By assumption, exists d € B with 2, ac =, B, bd.
=B = ¢(b,d)

=B = 3Ix¢(b, x)

Back-and-forth equivalence

Proof (=)
Fix c € A.

Back-and-forth equivalence
Proof (=)
Fix c € A.

0={¢(xy)|qr(p)<m, AE¢(ac)}
J=AN0

Back-and-forth equivalence

Proof (=)

Fix c € A.

0:={¢(xy)lqr(p)<m, A=y(ac)}
J:=AN0

=A=9(a,c)

Back-and-forth equivalence

Proof (=)

Fix c € A.

0:={¢(xy)lqr(p)<m, A=y(ac)}
J:=AN0

=A=9(a,c)

= A= 3yI(a,y)

Back-and-forth equivalence

Proof (=)

Fix c € A.

0:={¢xy)|ar(p) <m, A= ¢(a,c)}
J:=AN0

=A=9(a,c)

= A= 3yI(a,y)

By assumption, B = 3y9(b, y).

Back-and-forth equivalence

Proof (=)

Fix c € A.

0:={vxy)ar(p)<m, A= y(ac)}
d:=A0

=2AE9(a,c)

= A= 3yI(a,y)

By assumption, B = 3y9(b, y).

= exists d € B with B = 9(b, d)

Back-and-forth equivalence

Proof (=)

Fix c € A.

0:={vxy)ar(p)<m, A= y(ac)}
d:=A0

=A=9(a,c)

= A= 3yI(a,y)

By assumption, B = 3y9(b, y).

= exists d € B with B = 9(b, d)

= A, ac = B, bd

Ehrenfeucht-Fraissé Games
Game G (2, a;%B,b)
Players: Spoiler and Duplicator

m rounds:
- Spoiler picks an element of one structure.

- Duplicator picks an element of the other structure.

Winning: 2, a¢ =, B,bd (¢ €A™, d € B™ picked elements)

Ehrenfeucht-Fraissé Games
Game G (2, a;%B,b)
Players: Spoiler and Duplicator

m rounds:
- Spoiler picks an element of one structure.
- Duplicator picks an element of the other structure.

Winning: 2, a¢ =, B,bd (¢ €A™, d € B™ picked elements)

Theorem
20, @ =m B, b if, and only if, Duplicator wins G, (2, a; B, b)

Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Proof (=)

Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Proof (=)
For 2™~* < k < 2™, construct ¢, (x, y) with qr(¢;) = m stating that
x <y and there are at least k elements between x and y.

Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Proof (=)
For 2™~* < k < 2™, construct ¢, (x, y) with qr(¢;) = m stating that
x <y and there are at least k elements between x and y.

Po(X,y) =x<y,
k(% Y) = 32[@[(k-1)/21(% 2) A P (k=2)/2)(z ¥)].-

Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Proof (=)
For 2™~* < k < 2™, construct ¢, (x, y) with qr(¢;) = m stating that
x <y and there are at least k elements between x and y.

Po(X,y) =x<y,
k(% Y) = 32[@[(k-1)/21(% 2) A P (k=2)/2)(z ¥)].-

Construct ¢, with gr(¢,) = m stating that there are at least k
elements.

Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Proof (<) induction on m
(m = o) trivial

Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Proof (<) induction on m

(m = o) trivial

(m > 0) If Spoiler chooses a € A Duplicator answers with b € B such
that

Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Proof (<) induction on m

(m = o) trivial

(m > 0) If Spoiler chooses a € A Duplicator answers with b € B such
that

(#elements < a) =,m-_, (#elements<b),

(#elements > a) =,m-1_, (#elements >b).

(where i = jmeansi=jori,j>k)

Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Proof (<) induction on m

(m = o) trivial

(m > o) If Spoiler chooses a € A Duplicator answers with b € B such
that

(#elements < a) =,m-_, (#elements<b),

(#elements > a) =,m-1_, (#elements >b).

(where i = jmeansi=jori,j>k)
By inductive hypothesis, Duplicator can then continue the game for
m — 1 rounds.

Back-and-forth equivalence

Example linear orders

(A,<)=m (B, <) iff |A|=|B|] or |A]|B|>2"-1.

Corollary
There does not exist an FO-formula ¢ such that

(A, <)=q@ iff |A]iseven,

for all finite linear orders.

Words

Word structures

We can represent u = a,...0a,-, € 2" as a structure
({o,...,n =1}, <, (P)ees) with Pei={i<n|ai=c}.

Lemma

uzmu' and vzp,v' = uvzpu'v.

Words

Word structures

We can represent u = a,...0a,-, € 2" as a structure
({o,...,n =1}, <, (P)ees) with Pei={i<n|ai=c}.
Lemma

uzmu' and vzp,v' = uvzpu'v.

Corollary
For L ¢ >* FO-definable, there exists n € N such that

uw'wel < uv"wel, forallu,v,weZ*.

Examples

The following languages are not first-order definable.

+ (aa)”

Examples

The following languages are not first-order definable.

+ (aa)”
«{a"b" |neN}

Examples

The following languages are not first-order definable.
+ (aa)”
«{a"b" |neN}

« all correctly parenthesised expressions over the alphabet () x

Monadic Second-Order Logic

Syntax
- element variables: x, y, z, . ..
. setvariables: X, Y, Z, ...
- atomic formulae: R(x), x =y, x € X
« boolean operations: A, v, -, >, <
- quantifiers: 3x, Vx, 3X, VX

Example
« “The set X is empty.”

Monadic Second-Order Logic

Syntax

- element variables: x, y, z, . ..

. setvariables: X, Y, Z, ...

- atomic formulae: R(x), x =y, x € X
« boolean operations: A, v, -, >, <

- quantifiers: 3x, Vx, 3X, VX

Example
« “The set X is empty.”
—-3x[x € X]
Xcy”

Monadic Second-Order Logic

Syntax

- element variables: x, y, z, . ..

. setvariables: X, Y, Z, ...

- atomic formulae: R(x), x =y, x € X
« boolean operations: A, v, -, >, <

- quantifiers: 3x, Vx, 3X, VX

Example
« “The set X is empty.”
—-3x[x € X]
Xcy”
Vz[zeX >z € Y]
« “There exists a path from x to y.”

Monadic Second-Order Logic

Syntax

- element variables: x, y, z, . ..

. setvariables: X, Y, Z, ...

- atomic formulae: R(x), x =y, x € X
« boolean operations: A, v, -, >, <

- quantifiers: 3x, Vx, 3X, VX

Example
« “The set X is empty.”
—-3x[x € X]
Xcy”
Vz[zeX >z € Y]
« “There exists a path from x to y.”
VZ[xeZAVuVv[ueZAE(uv) >veZ]>yeZ]

Back-and-Forth Equivalence

m-equivalence

AP,a=m0B,0b :iff A=e(P,a) < BEoe(Qb)
forall (X, x) with qr(¢) <m.

Back-and-Forth Equivalence

m-equivalence

A P,a=M0%8,Q,b :iff Aro@(P,a) < Bre(Q b)
forall (X, x) with qr(¢) <m.

Ehrenfeucht-Fraissé Game

Both players choose an element or a set in each round.

Back-and-Forth Equivalence
m-equivalence
A P,a=M098 Qb :iff Aroe(P,a) < BE=eQ b)
forall (X, x) with qr(¢) <m.

Ehrenfeucht-Fraissé Game

Both players choose an element or a set in each round.

Lemma

_MSO 7/ _MSO s _MSO 7 1
us,"u o oand vt v = uvs>ulv.

Automata

Given ¢ of quantifier rank m, construct Ay = (Q, %, 6, qo, F)

Automata

Given ¢ of quantifier rank m, construct Ay = (Q, %, 6, qo, F)

Idea: Given w = a---a,_, compute =M59_classes

1=l el |@e@nlimn aoor [Eatine==t a i

Automata

Given ¢ of quantifier rank m, construct Ay = (Q, %, 6, qo, F)

Idea: Given w = a---a,_, compute =M59_classes

[€]ms [90]ms [0002]m) --.) [@002Gn_1]m -

$Qi= 3 =0

Automata

Given ¢ of quantifier rank m, construct Ay = (Q, %, 6, qo, F)

Idea: Given w = a---a,_, compute =M59_classes

(€]lm, [@o]lms [G0G1]m) ..., [001n-1]m.
e Q= 3*/=MS0

*qo = [€]m

Automata

Given ¢ of quantifier rank m, construct Ay = (Q, %, 6, qo, F)

Idea: Given w = a---a,_, compute =M59_classes

(€]lm, [@o]lms [G0G1]m) ..., [001n-1]m.
e Q= 3*/=MS0

*qo = [€]m
«6([W]m, €)= [wc]m

Automata

Given ¢ of quantifier rank m, construct Ay = (Q, %, 6, qo, F)

Idea: Given w = a---a,_, compute =M59_classes

[€]ms [90]ms [0002]m) --.) [@002Gn_1]m -
e Q= 3*/=MS0
*qo = [€]m
«6([W]m, €)= [wc]m
cF={[wlm|[wEo}

Automata

Given ¢ of quantifier rank m, construct Ay = (Q, %, 6, qo, F)

Idea: Given w = a---a,_, compute =M59_classes

[€]m, [@o]m, [a0a1]m, ..., [@0@1-Gn-1]m.
e Q= 3*/=MS0
*qo = [€]m
*8([w]m, c) := [wc]m
cFe={{w]m|wEe}
Theorem
Ay accepts aword w € ™ if, and only if, w = ¢.

Automata

Given ¢ of quantifier rank m, construct Ay = (Q, %, 6, qo, F)

Idea: Given w = a---a,_, compute =M59_classes

[€]m, [@o]m, [a0a1]m, ..., [@0@1-Gn-1]m.
e Q= 3*/=MS0
*qo = [€]m
*8([w]m, c) := [wc]m
cFe={{w]m|wEe}
Theorem
Ay accepts aword w € ™ if, and only if, w = ¢.

Corollary

¢ is satisfiable (by a finite word) if, and only if, Ay accepts some
word.

Automata
Given A =(Q, %, 8, g0, F) construct ¢ 4.

Automata
Given A =(Q, %, 8, g0, F) construct ¢ 4.

@4 :=3(Zg)qeq[ADM A INIT A TRANS A ACC|

Automata
Given A =(Q, %, 8, g0, F) construct ¢ 4.

@4 :=3(Zg)qeq[ADM A INIT A TRANS A ACC|

ADM :=Vx A\ =(x € Z, Ax e Zg)
p#q

Automata
Given A =(Q, %, 8, g0, F) construct ¢ 4.

@4 :=3(Zg)qeq[ADM A INIT A TRANS A ACC|

ADM :=Vx A\ =(x € Z, Ax e Zg)
p#q

ACC:=\/[last € Z4]
qeF

Automata
Given A =(Q, %, 8, g0, F) construct ¢ 4.

@4 :=3(Zg)qeq[ADM A INIT A TRANS A ACC|

ADM :=Vx A\ =(x € Z, Ax e Zg)
p#q

ACC:=\/[last € Z4]
qeF

INIT := \/ [Pc(first) Afirst € Zsg,,c)]
ceX

Automata
Given A =(Q, %, 8, g0, F) construct ¢ 4.

@4 :=3(Zg)qeq[ADM A INIT A TRANS A ACC|

TRANS := VxVy[y =x+1-> \ A[xeZgnPc(y)—>yce Zs(q'c)]].
ce3 qeQ

Automata
Given A =(Q, %, 8, g0, F) construct ¢ 4.

@4 :=3(Zg)qeq[ADM A INIT A TRANS A ACC|
TRANS := VxVy[y=x+1-> A\ A[xeZgaPc(y) > ye Zs(q'c)]].
ce3 qeQ

Theorem
w = ¢ 4 if, and only if, A accepts w.

Automata
Given A =(Q, %, 8, g0, F) construct ¢ 4.

@4 :=3(Zg)qeq[ADM A INIT A TRANS A ACC|

TRANS := VxVy[y=x+1-> A\ A[xeZgaPc(y) > ye Zg(q'c)]].
ce3 qeQ

Theorem
w = ¢ 4 if, and only if, A accepts w.

Corollary
Alanguage L ¢ >* is regular if, and only if, it is MSO-definable.

Automata

Corollary
Alanguage L ¢ =™ is regular if, and only if, it is MSO-definable.

Example

L={a"b" | neN}isnotregular.

Automata

Corollary
Alanguage L ¢ =™ is regular if, and only if, it is MSO-definable.

Example

L={a"b" | neN}isnotregular.
Proof

Suppose that ¢ € MSO defines L.

Automata

Corollary
Alanguage L ¢ =™ is regular if, and only if, it is MSO-definable.

Example

L={a"b" | neN}isnotregular.
Proof

Suppose that ¢ € MSO defines L.
Setm :=qr(¢p).

Automata

Corollary
Alanguage L ¢ =™ is regular if, and only if, it is MSO-definable.

Example
L={a"b" | neN}isnotregular.

Proof
Suppose that ¢ € MSO defines L.
Setm :=qr(¢p).

There exist i < k with a’ =MSO gk,

Automata

Corollary
Alanguage L ¢ =™ is regular if, and only if, it is MSO-definable.

Example
L={a"b" | neN}isnotregular.

Proof
Suppose that ¢ € MSO defines L.
Setm :=qr(¢p).

There exist i < k with a’ =MSO gk,

albl el

Automata

Corollary
Alanguage L ¢ =™ is regular if, and only if, it is MSO-definable.

Example
L={a"b" | neN}isnotregular.

Proof

Suppose that ¢ € MSO defines L.
Setm :=qr(¢p).

There exist i < k with a’ =MSO gk,
a'b el

=ab ke

Automata

Corollary
Alanguage L ¢ =™ is regular if, and only if, it is MSO-definable.

Example
L={a"b" | neN}isnotregular.

Proof

Suppose that ¢ € MSO defines L.
Setm :=qr(¢p).

There exist i < k with a’ =MSO gk,
a'b el

=ab ke

:>akbi|:(p

Automata

Corollary
Alanguage L ¢ =™ is regular if, and only if, it is MSO-definable.

Example

L={a"b" | neN}isnotregular.
Proof

Suppose that ¢ € MSO defines L.
Setm :=qr(¢p).

There exist i < k with a’ =MSO gk,
a'b el

=ab ke

= akbi E @

= akbi e L Contradiction.

The Theorem of Gaifman
Gaifman graph
G(A):=(AE) where E:={(cjcj)|CeR, ci*cj}
d(x, y) distance in G(2l)

The Theorem of Gaifman

Gaifman graph
G(A):=(AE) where E:={(cjcj)|CeR, ci*cj}
d(x, y) distance in G(2l)

Relativisation g(") (x)
replace 3y by 3y[d(x,y)<rna9]
replace Vy3 by Vy[d(x,y)<r—3]

The Theorem of Gaifman

Gaifman graph
G(A):=(AE) where E:={(cjcj)|CeR, ci*cj}
d(x, y) distance in G(2l)

Relativisation g(") (x)
replace 3y by 3y[d(x,y)<rna9]
replace Vy3 by Vy[d(x,y)<r—3]

Basic local sentence

@ =30 Xna[A d(xi, xj) 2 2r A A\ 907 (x7)]

i+ i<n

The Theorem of Gaifman

Gaifman graph
G(A):=(AE) where E:={(cjcj)|CeR, ci*cj}
d(x, y) distance in G(2l)

Relativisation g(") (x)
replace 3y by 3y[d(x,y)<rna9]
replace Vy3 by Vy[d(x,y)<r—3]

Basic local sentence

@ =30 Xna[A d(xi, xj) 2 2r A A\ 907 (x7)]

i#j i<n
Theorem
Every FO-formula ¢ (%) is equivalent to a boolean combination of

« basic local sentences and
- formulae of the form ¢(") (x;).

Examples

Connectivity is not first-order definable.

Examples

Connectivity is not first-order definable.

Examples

Planarity is not first-order definable.

Examples

Planarity is not first-order definable.

Proof

Suppose that 20 and B satisfy the same basic local sentences up to
gr h(r).

N(a,r):={c|d(c, a;j) <rforsomei}

Proof

Suppose that 20 and B satisfy the same basic local sentences up to
gr h(r).

N(a,r):={c|d(c, a;j) <rforsomei}

Claim N(a,7"),a =4(r) N(B, 7r),5 = A,a=B,b

Proof

Suppose that 20 and B satisfy the same basic local sentences up to
gr h(r).
N(a,r):={c|d(c, a;j) <rforsomei}

Claim N(a,7"),d=4(r N(b,7"),b = A,a= B,b

Using this claim, we can proof the theorem as follows.
Let r := qr(¢). Itis sufficient to show that

e(%) =V {xaa(x) [A=oe(a)},
where
Xa,a(%) = A\ O A\ Og,5(%),

Og = { ¢ | Y basiclocal, qr(y) <h(r), A=y},
0y = {97 () | ar(p) <g(r), Ak p(a) }.

Proof

Suppose that
- % and B satisfy the same basic local sentences up to qr h(r).
«N(@,7"), 8 =4r) N(b,7"), b implies 2, 6 =, B, b

Claim (%) = \/{xaa(%) | A ¢(a) },
X2, (%) = A\ O A\ 0g,5(X),
Og = { ¢ | p basiclocal, qr(y) <h(r), A=y},
0y = {7 (®) |ar(p) < g(r), A= p(a) }.

Proof

Suppose that
- % and B satisfy the same basic local sentences up to qr h(r).
«N(@,7"), 8 =4r) N(b,7"), b implies 2, 6 =, B, b

Claim (%) = \/{xaa(%) | A ¢(a) },
X2, (%) = A\ O A\ 0g,5(X),
Og = { ¢ | p basiclocal, qr(y) <h(r), A=y},
0y = {7 (®) |ar(p) < g(r), A= p(a) }.

Proof (=)

Proof

Suppose that
- % and B satisfy the same basic local sentences up to qr h(r).
«N(@,7"), 8 =4r) N(b,7"), b implies 2, 6 =, B, b

Claim (%) = \/{xaa(%) | A ¢(a) },
X2, (%) = A\ O A\ 0g,5(X),
Og = { ¢ | p basiclocal, qr(y) <h(r), A=y},
0y = {7 (®) |ar(p) < g(r), A= p(a) }.

Proof (=)
B e o(b)

Proof

Suppose that
- % and B satisfy the same basic local sentences up to qr h(r).
«N(@,7"), 8 =4r) N(b,7"), b implies 2, 6 =, B, b

Claim (%) = \/{xaa(%) | A ¢(a) },
X2, (%) = A\ O A\ 0g,5(X),
Og = { ¢ | p basiclocal, qr(y) <h(r), A=y},
0y = {7 (®) |ar(p) < g(r), A= p(a) }.

Proof (=)
B e o(b)
=B ':X%,E(E)

Proof

Suppose that
- % and B satisfy the same basic local sentences up to qr h(r).
«N(@,7"), 8 =4r) N(b,7"), b implies 2, 6 =, B, b

Claim (%) = \/{xaa(%) | A ¢(a) },
X2, (%) = A\ O A\ 0g,5(X),
Og = { ¢ | p basiclocal, qr(y) <h(r), A=y},
0y = {7 (®) |ar(p) < g(r), A= p(a) }.

Proof («<=)
B k= Xa,a(b)

Proof

Suppose that
- % and B satisfy the same basic local sentences up to qr h(r).
«N(@,7"), 8 =4r) N(b,7"), b implies 2, 6 =, B, b

Claim ¢(x) = \/{x2a(%) [~ @(a)},
Xa,a(%) = /\ O A /\ 095(X),
Og := { 1)] ¢ basic local, qr(¢) <h(r), A=y },
0y = {97 (®) | ar(p) < g(r), A= y(a) }.

Proof (<)

B E ya,a(b)

= 9B satisfies the same basic local sentences as 2[and
N(B, 7r)’ b =g(r) N(a, 7r)’ a

Proof

Suppose that
- % and B satisfy the same basic local sentences up to qr h(r).
«N(@,7"), 8 =4r) N(b,7"), b implies 2, 6 =, B, b

Claim @(x) = \/{xa,a(X) [AF o(a) },
X2,a(%) = A\ O A /\ O 5(%),
Og := { 1)] ¢ basic local, qr(¢) <h(r), A=y };
0y = {97 (%) | ar(p) < g(r), A= y(a)}.
Proof («<=)
B E xu,a(b)
=B sa_tisﬁes_the same basic local sentences as 2l and
N(b,7"),b =gy N(a,7"), a
=B, b = 2, a

Proof

Suppose that
- % and B satisfy the same basic local sentences up to qr h(r).
«N(@,7"), 8 =4r) N(b,7"), b implies 2, 6 =, B, b

Claim @(x) = \/{xa,a(X) [AF o(a) },
X2,a(%) = A\ O A /\ O 5(%),
Og := { 1)] ¢ basic local, qr(¢) <h(r), A=y };
0y = {97 (%) | ar(p) < g(r), A= y(a)}.
Proof («<=)
B E xu,a(b)
=B sa_tisﬁes_the same basic local sentences as 2l and
N(b; 7r)’ b =q(r) N(a, 7r)’ a
=B, b = 2, a
=B E (p(B)

Proof

Suppose that 20 and B satisfy the same basic local sentences up to
gr h(r).

N(a,r):={c|d(c a;) <rforsomei}
Claim N(4,7"),d=g,) N(b,7),b = Aa=B,b

Claim There exists Ya,r,m(X) such that

B E Parm(b) iff N(br),b=mN(@,r)a

Proof
Suppose that 20 and B satisfy the same basic local sentences up to
gr h(r).
N(a,r):={c|d(c a;) <rforsomei}

Claim N(a,7),8=g)N(b,7),b = Aa= B,b
Claim There exists Ya,r,m(X) such that

B Par,m(b) iff N(br),b=mN(ar)a
Set

Ya,r,m = /\ 0

where

0= {g(r)(,-() |qr(9) <m, N(a,r)=9(a)}

Proof
Suppose that 20 and B satisfy the same basic local sentences up to
gr h(r).
N(a,r):={c|d(c aj) <rforsomei}

Claim N((_J, 7”), a =q(r) N(B, 7r)’ b = 2A,a=B,b

Induction on r

Proof

Suppose that 20 and B satisfy the same basic local sentences up to
gr h(r).

N(a,r):={c|d(c a;) <rforsomei}
Claim N(4,7"),d=g,) N(b,7),b = Aa=B,b

Induction on r

(r=0)N(a,1) =, N(b,1) = A,a=,B,b

Proof

Suppose that 20 and B satisfy the same basic local sentences up to
gr h(r).

N(a,r):={c|d(c aj) <rforsomei}
Claim N(a,7"),a =) N(B, 7r),5 = A a= B,b
Induction on r
(r+1)FixceA.

Proof

Suppose that 20 and B satisfy the same basic local sentences up to
gr h(r).

N(a,r):={c|d(c a;) <rforsomei}
Claim N(4,7"),d=g,) N(b,7),b = Aa=B,b
Induction on r
(r+1)FixceA.

Case1ceN(a,2-7") (cis close to the @)

Proof
Suppose that 20 and B satisfy the same basic local sentences up to
gr h(r).
N(a,r):={c|d(c a;) <rforsomei}
Claim N(4,7"),d=g,) N(b,7),b = Aa=B,b
Induction on r
(r+1)FixceA.

Case1ceN(a,2-7") (cis close to the @)
Then N(c,7") < N(a,7""*) and

N(a) r+1)l a =g(r)+k+m+1 N(B, 7r+1)' B

7
= N(a,7"™), ac = N(b,7"*),bd forsomedeN(b,2-7"),
= N(ac,7'), ac =) N(bd, 7), bd.

g(r+1) >g(r)+k+m+1where k, m are the quantifier-ranks of the
formulae defining N(a, 2-7") and N(ac, 7).

Proof

Case2c ¢ N(a,2-7") (cis not close to the @)

Proof

Case2c ¢ N(a,2-7") (cis not close to the @)

9k (%) = Nd(xi, ;) 24-7" A N[N(xi, 77) =¢(ry) N(c, 77)].

i#j i

Proof

Case2c ¢ N(a,2-7") (cis not close to the @)
Sk()_() 5= /\d(X;, X}) >4-7" A /_\[N(Xi; 7r) =q(r) N(c, 7r)] 0
i%j i

Let k be maximal such that N(a, 2-7") contains k elements ¢’ with
N(a,7"") = 9, (8").

(Note that k < |al.)

Proof

Case2c ¢ N(a,2-7") (cis not close to the @)

I (x) = \d(xi, %) > 4-7" A N\[N(xi, 7") =g(r) N(c, 7)].

i%j i
Let k be maximal such that N(a, 2-7") contains k elements ¢’ with
N(a,7"") = 9, (8").

(Note that k < |al.)
= k is also the maximum for N(b, 7
Case2a B = 3x9;,,(X) (c is far away from the @)

l’+1)

Proof

Case2c ¢ N(a,2-7") (cis not close to the @)
Sk()_() 5= /\d(X;, X}) >4-7" A /_\[N(Xi; 7r) =q(r) N(c, 7r)] 0
i%j i

Let k be maximal such that N(a, 2-7") contains k elements ¢’ with
N(a,7"") = 9, (8").

(Note that k < |al.)

= k is also the maximum for N(B, 7
Case2a B = 3x9;,,(X) (c is far away from the @)
Then there is some d ¢ N(b, 2-77) with

l’+1)

N(d, 7r) =g(r) N(C, 7r) :

Proof
Case2c ¢ N(a,2-7")

9k (%) = Nd(xi, ;) 24-7" A N[N(xi, 7") =¢(r) N(c, 7")].

i#j i

Case2b B = -3x9;,,(X) (cis at medium distance from the &)

Proof
Case2c ¢ N(a,2-7")

9k (%) = Nd(xi, ;) 24-7" A N[N(xi, 7") =¢(r) N(c, 7")].

i#j i

Case2b B = -3x9;,,(X) (cis at medium distance from the &)
T)

Proof
Case2c ¢ N(a,2-7")

9 (%) = Nd(xi,xj) > 4-7" A~ A[N(xi, 77) =9(ry N(c, 7]
i%f i
Case2b B = -3x9;,,(X) (cis at medium distance from the &)
= 9 ~3%9; 4 (%)
= ceN(a,7"") satisfies 2- 7" < d(c,a;) <6-7"

Proof

Case2c ¢ N(a,2-7")

9 (%) = Nd(xi,xj) > 4-7" A~ A[N(xi, 77) =9(ry N(c, 7]
i i
Case2b B = -3x9;,,(X) (cis at medium distance from the &)
= A= -3IxYy . (%)
= ceN(a,7"") satisfies 2- 7" < d(c,a;) <6-7"
= There is some d € N(b, 77**) such that

2-7"<d(d,bj) <6-7" and N(d,7")=g¢) N(c,7").

