IAoo8: Computational Logic

5. Ehrenfeucht-Fraïssé Games

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Definition

The quantifier rank of a formula φ is the nesting depth of quantifiers in φ .

Definition

The quantifier rank of a formula φ is the nesting depth of quantifiers in φ .

```
\begin{split} &\operatorname{qr}(s=t)\coloneqq \operatorname{o}\,, & \operatorname{qr}(\phi\wedge\psi)\coloneqq \max\left\{\operatorname{qr}(\phi),\,\operatorname{qr}(\psi)\right\},\\ &\operatorname{qr}(R\bar{t})\coloneqq \operatorname{o}\,, & \operatorname{qr}(\phi\vee\psi)\coloneqq \max\left\{\operatorname{qr}(\phi),\,\operatorname{qr}(\psi)\right\},\\ &\operatorname{qr}(\exists x\phi)\coloneqq \operatorname{1}+\operatorname{qr}(\phi)\,, & \operatorname{qr}(\neg\phi)\coloneqq \operatorname{qr}(\phi)\,,\\ &\operatorname{qr}(\forall x\phi)\coloneqq \operatorname{1}+\operatorname{qr}(\phi)\,. \end{split}
```

Definition

The **quantifier rank** of a formula φ is the nesting depth of quantifiers in φ .

```
\begin{split} &\text{qr}(\textbf{s} = \textbf{t}) \coloneqq \textbf{0}\,, & \text{qr}(\phi \land \psi) \coloneqq \text{max}\,\{\text{qr}(\phi),\,\text{qr}(\psi)\}\,, \\ &\text{qr}(R\bar{\textbf{t}}) \coloneqq \textbf{0}\,, & \text{qr}(\phi \lor \psi) \coloneqq \text{max}\,\{\text{qr}(\phi),\,\text{qr}(\psi)\}\,, \\ &\text{qr}(\exists \textbf{x}\phi) \coloneqq \textbf{1} + \text{qr}(\phi)\,, & \text{qr}(\neg\phi) \coloneqq \text{qr}(\phi)\,, \\ &\text{qr}(\forall \textbf{x}\phi) \coloneqq \textbf{1} + \text{qr}(\phi)\,. \end{split}
```

Example

```
qr(\forall x \exists y R(x,y)) = 2,

qr(\forall x [P(x) \lor Q(x)] \land \forall z [\exists y R(y,z) \lor \exists y R(z,y)]) = 2.
```

Lemma

Up to logical equivalence, there are only finitely many formulae of quantifier rank at most m with free variables \bar{x} . (For a fixed signature Σ that is finite and relational.)

Proof

Lemma

Up to logical equivalence, there are only finitely many formulae of quantifier rank at most m with free variables \bar{x} . (For a fixed signature Σ that is finite and relational.)

Proof

Induction on m.

Lemma

Up to logical equivalence, there are only finitely many formulae of quantifier rank at most m with free variables \bar{x} . (For a fixed signature Σ that is finite and relational.)

Proof

Induction on m.

(m = 0) Every quantifier-free formula is a boolean combination of atomic formulae.

Lemma

Up to logical equivalence, there are only finitely many formulae of quantifier rank at most m with free variables \bar{x} . (For a fixed signature Σ that is finite and relational.)

Proof

Induction on m.

(m = 0) Every quantifier-free formula is a boolean combination of atomic formulae.

There are only finitely many atomic formulae with variables \bar{x} .

Lemma

Up to logical equivalence, there are only finitely many formulae of quantifier rank at most m with free variables \bar{x} . (For a fixed signature Σ that is finite and relational.)

Proof

Induction on m.

(m = 0) Every quantifier-free formula is a boolean combination of atomic formulae.

There are only finitely many atomic formulae with variables \bar{x} . There are only finitely many different boolean combinations (e.g., we can use disjunctive normal form).

Lemma

Up to logical equivalence, there are only finitely many formulae of quantifier rank at most m with free variables \bar{x} . (For a fixed signature Σ that is finite and relational.)

Proof

Induction on m.

(m = 0) Every quantifier-free formula is a boolean combination of atomic formulae.

There are only finitely many atomic formulae with variables \bar{x} .

There are only finitely many different boolean combinations (e.g., we can use disjunctive normal form).

(m > 0) Every such formula is a boolean combination of formulae of the form $\exists y \varphi(\bar{x}, y)$ where $qr(\varphi) < m$.

Lemma

Up to logical equivalence, there are only finitely many formulae of quantifier rank at most m with free variables \bar{x} . (For a fixed signature Σ that is finite and relational.)

Proof

Induction on m.

(m = 0) Every quantifier-free formula is a boolean combination of atomic formulae.

There are only finitely many atomic formulae with variables \bar{x} .

There are only finitely many different boolean combinations (e.g., we can use disjunctive normal form).

(m > 0) Every such formula is a boolean combination of formulae of the form $\exists y \varphi(\bar{x}, y)$ where $qr(\varphi) < m$.

By inductive hypothesis, there are only finitely many $\varphi(\bar{x}, y)$.

Lemma

Up to logical equivalence, there are only finitely many formulae of quantifier rank at most m with free variables \bar{x} . (For a fixed signature Σ that is finite and relational.)

Proof

Induction on m.

(m = 0) Every quantifier-free formula is a boolean combination of atomic formulae.

There are only finitely many atomic formulae with variables \bar{x} .

There are only finitely many different boolean combinations (e.g., we can use disjunctive normal form).

(m > 0) Every such formula is a boolean combination of formulae of the form $\exists y \varphi(\bar{x}, y)$ where $qr(\varphi) < m$.

By inductive hypothesis, there are only finitely many $\varphi(\bar{x}, y)$.

There are only finitely many different boolean combinations.

m-equivalence

$$\mathfrak{A}, \bar{a} \equiv_m \mathfrak{B}, \bar{b}$$
 : iff $\mathfrak{A} \models \varphi(\bar{a}) \Leftrightarrow \mathfrak{B} \models \varphi(\bar{b}),$ for all $\varphi(\bar{x})$ with $\operatorname{qr}(\varphi) \leq m$.

m-equivalence

$$\mathfrak{A}, \bar{a} \equiv_m \mathfrak{B}, \bar{b}$$
 : iff $\mathfrak{A} \models \varphi(\bar{a}) \Leftrightarrow \mathfrak{B} \models \varphi(\bar{b}),$ for all $\varphi(\bar{x})$ with $\operatorname{qr}(\varphi) \leq m$.

Lemma

 \equiv_m is an equivalence relation with finitely many classes.

m-equivalence

$$\mathfrak{A}, \bar{a} \equiv_m \mathfrak{B}, \bar{b}$$
 : iff $\mathfrak{A} \models \varphi(\bar{a}) \Leftrightarrow \mathfrak{B} \models \varphi(\bar{b}),$ for all $\varphi(\bar{x})$ with $\operatorname{qr}(\varphi) \leq m$.

Lemma

 \equiv_m is an equivalence relation with finitely many classes.

Lemma

$$\mathfrak{A}, \bar{a} \equiv_{m+1} \mathfrak{B}, \bar{b}$$

if, and only if,

- for all $c \in A$, exists $d \in B$ with \mathfrak{A} , $\bar{a}c \equiv_m \mathfrak{B}$, $\bar{b}d$ and
- for all $d \in B$, exists $c \in A$ with \mathfrak{A} , $\bar{a}c \equiv_m \mathfrak{B}$, $\bar{b}d$.

('back-and-forth conditions')

 $\mathsf{Proof}\left(\Leftarrow\right)$

Suppose $\mathfrak{A} \models \exists x \varphi(\bar{a}, x) \text{ with } qr(\varphi) \leq m$.

 $Proof(\Leftarrow)$

Suppose $\mathfrak{A} \models \exists x \varphi(\bar{a}, x)$ with $qr(\varphi) \leq m$.

 \Rightarrow exists $c \in A$ with $\mathfrak{A} \models \varphi(\bar{a}, c)$.

 $\mathsf{Proof}\left(\Leftarrow\right)$

Suppose $\mathfrak{A} \models \exists x \varphi(\bar{a}, x)$ with $qr(\varphi) \leq m$.

 \Rightarrow exists $c \in A$ with $\mathfrak{A} \models \varphi(\bar{a}, c)$.

By assumption, exists $d \in B$ with \mathfrak{A} , $\bar{a}c \equiv_m \mathfrak{B}$, $\bar{b}d$.

$Proof(\Leftarrow)$

Suppose $\mathfrak{A} \models \exists x \varphi(\bar{a}, x)$ with $qr(\varphi) \leq m$.

$$\Rightarrow$$
 exists $c \in A$ with $\mathfrak{A} \models \varphi(\bar{a}, c)$.

By assumption, exists $d \in B$ with \mathfrak{A} , $\bar{a}c \equiv_m \mathfrak{B}$, $\bar{b}d$.

$$\Rightarrow \mathfrak{B} \vDash \varphi(\bar{b}, d)$$

$Proof(\Leftarrow)$

Suppose $\mathfrak{A} \models \exists x \varphi(\bar{a}, x)$ with $qr(\varphi) \leq m$.

$$\Rightarrow$$
 exists $c \in A$ with $\mathfrak{A} \models \varphi(\bar{a}, c)$.

By assumption, exists $d \in B$ with \mathfrak{A} , $\bar{a}c \equiv_m \mathfrak{B}$, $\bar{b}d$.

$$\Rightarrow \mathfrak{B} \vDash \varphi(\bar{b}, d)$$

$$\Rightarrow \mathfrak{B} \vDash \exists x \varphi(\bar{b}, x)$$

 $Proof(\Rightarrow)$

Fix $c \in A$.

```
Proof (\Rightarrow)

Fix c \in A.

\Theta := \{ \psi(\bar{x}, y) \mid qr(\psi) \le m, \ \mathfrak{A} \models \psi(\bar{a}, c) \}

\vartheta := \wedge \Theta
```

```
Proof (\Rightarrow)

Fix c \in A.

\Theta := \{ \psi(\bar{x}, y) \mid qr(\psi) \le m, \ \mathfrak{A} \models \psi(\bar{a}, c) \}

\vartheta := \wedge \Theta

\Rightarrow \mathfrak{A} \models \vartheta(\bar{a}, c)
```

```
Proof (\Rightarrow)

Fix c \in A.

\Theta := \{ \psi(\bar{x}, y) \mid qr(\psi) \le m, \ \mathfrak{A} \models \psi(\bar{a}, c) \}

\vartheta := \wedge \Theta

\Rightarrow \mathfrak{A} \models \vartheta(\bar{a}, c)

\Rightarrow \mathfrak{A} \models \exists y \vartheta(\bar{a}, y)
```

```
Proof (\Rightarrow)

Fix c \in A.

\Theta := \{ \psi(\bar{x}, y) \mid qr(\psi) \le m, \ \mathfrak{A} \models \psi(\bar{a}, c) \}

\vartheta := \wedge \Theta

\Rightarrow \mathfrak{A} \models \vartheta(\bar{a}, c)

\Rightarrow \mathfrak{A} \models \exists y \vartheta(\bar{a}, y)

By assumption, \mathfrak{B} \models \exists y \vartheta(\bar{b}, y).
```

Proof (\Rightarrow) Fix $c \in A$. $\Theta := \{ \psi(\bar{x}, y) \mid qr(\psi) \le m, \ \mathfrak{A} \models \psi(\bar{a}, c) \}$ $\vartheta := \wedge \Theta$ $\Rightarrow \mathfrak{A} \models \vartheta(\bar{a}, c)$ $\Rightarrow \mathfrak{A} \models \exists y \vartheta(\bar{a}, y)$ By assumption, $\mathfrak{B} \models \exists y \vartheta(\bar{b}, y)$.

 \Rightarrow exists $d \in B$ with $\mathfrak{B} \models \vartheta(\bar{b}, d)$

$Proof(\Rightarrow)$ Fix $c \in A$. $\Theta := \{ \psi(\bar{x}, y) \mid qr(\psi) \leq m, \ \mathfrak{A} \models \psi(\bar{a}, c) \}$ $\vartheta := \wedge \Theta$ $\Rightarrow \mathfrak{A} \models \vartheta(\bar{a}, c)$ $\Rightarrow \mathfrak{A} \models \exists y \vartheta(\bar{a}, y)$ By assumption, $\mathfrak{B} \models \exists y \vartheta(\bar{b}, y)$. \Rightarrow exists $d \in B$ with $\mathfrak{B} \models \vartheta(\bar{b}, d)$

 $\Rightarrow \mathfrak{A}, \bar{a}c \equiv_m \mathfrak{B}, \bar{b}d$

Ehrenfeucht-Fraïssé Games

Game $\mathcal{G}_m(\mathfrak{A}, \bar{a}; \mathfrak{B}, \bar{b})$

Players: Spoiler and Duplicator

m rounds:

- Spoiler picks an element of one structure.
- Duplicator picks an element of the other structure.

Winning: \mathfrak{A} , $\bar{a}\bar{c} \equiv_{0} \mathfrak{B}$, $\bar{b}\bar{d}$ $(\bar{c} \in A^{m}, \bar{d} \in B^{m} \text{ picked elements})$

Ehrenfeucht-Fraïssé Games

Game $\mathcal{G}_m(\mathfrak{A}, \bar{a}; \mathfrak{B}, \bar{b})$

Players: Spoiler and Duplicator

m rounds:

- Spoiler picks an element of one structure.
- Duplicator picks an element of the other structure.

Winning: \mathfrak{A} , $\bar{a}\bar{c} \equiv_{0} \mathfrak{B}$, $\bar{b}\bar{d}$ ($\bar{c} \in A^{m}$, $\bar{d} \in B^{m}$ picked elements)

Theorem

 \mathfrak{A} , $\bar{a} \equiv_{\mathsf{m}} \mathfrak{B}$, \bar{b} if, and only if, Duplicator wins $\mathcal{G}_{\mathsf{m}}(\mathfrak{A}, \bar{a}; \mathfrak{B}, \bar{b})$

Example linear orders

$$\langle A, \leq \rangle \equiv_m \langle B, \leq \rangle$$
 iff $|A| = |B|$ or $|A|, |B| \geq 2^m - 1$.

Example linear orders

```
\langle A, \leq \rangle \equiv_m \langle B, \leq \rangle iff |A| = |B| or |A|, |B| \ge 2^m - 1.
```

 $Proof(\Rightarrow)$

Example linear orders

$$\langle A, \leq \rangle \equiv_m \langle B, \leq \rangle$$
 iff $|A| = |B|$ or $|A|, |B| \ge 2^m - 1$.

$Proof(\Rightarrow)$

For $2^{m-1} \le k < 2^m$, construct $\varphi_k(x, y)$ with $qr(\varphi_k) = m$ stating that x < y and there are at least k elements between x and y.

Example linear orders

$$\langle A, \leq \rangle \equiv_m \langle B, \leq \rangle$$
 iff $|A| = |B|$ or $|A|, |B| \ge 2^m - 1$.

$Proof(\Rightarrow)$

For $2^{m-1} \le k < 2^m$, construct $\varphi_k(x, y)$ with $\operatorname{qr}(\varphi_k) = m$ stating that x < y and there are at least k elements between x and y.

$$\varphi_{o}(x,y) := x < y,$$

$$\varphi_{k}(x,y) := \exists z [\varphi_{\lceil (k-1)/2 \rceil}(x,z) \land \varphi_{\lfloor (k-1)/2 \rfloor}(z,y)].$$

Example linear orders

$$\langle A, \leq \rangle \equiv_m \langle B, \leq \rangle$$
 iff $|A| = |B|$ or $|A|, |B| \ge 2^m - 1$.

$Proof(\Rightarrow)$

For $2^{m-1} \le k < 2^m$, construct $\varphi_k(x, y)$ with $\operatorname{qr}(\varphi_k) = m$ stating that x < y and there are at least k elements between x and y.

$$\begin{split} & \varphi_{\text{o}}(x,y) \coloneqq x < y \,, \\ & \varphi_{k}(x,y) \coloneqq \exists z \big[\varphi_{\lceil (k-1)/2 \rceil}(x,z) \land \varphi_{\lfloor (k-1)/2 \rfloor}(z,y) \big] \,. \end{split}$$

Construct ψ_k with $qr(\psi_k) = m$ stating that there are at least k elements.

Example linear orders

$$\langle A, \leq \rangle \equiv_m \langle B, \leq \rangle$$
 iff $|A| = |B|$ or $|A|, |B| \geq 2^m - 1$.

Proof (\Leftarrow) induction on m (m = 0) trivial

Example linear orders

$$\langle A, \leq \rangle \equiv_m \langle B, \leq \rangle$$
 iff $|A| = |B|$ or $|A|, |B| \ge 2^m - 1$.

Proof (\Leftarrow) induction on m (m = 0) trivial (m > 0) If Spoiler chooses $a \in A$ Duplicator answers with $b \in B$ such that

Back-and-forth equivalence

Example linear orders

$$\langle A, \leq \rangle \equiv_m \langle B, \leq \rangle$$
 iff $|A| = |B|$ or $|A|, |B| \ge 2^m - 1$.

Proof (\Leftarrow) induction on m (m = 0) trivial (m > 0) If Spoiler chooses $a \in A$ Duplicator answers with $b \in B$ such that

$$(\#elements < a) =_{2^{m-1}-1} (\#elements < b),$$

 $(\#elements > a) =_{2^{m-1}-1} (\#elements > b).$

(where $i =_k j$ means i = j or $i, j \ge k$)

Back-and-forth equivalence

Example linear orders

$$\langle A, \leq \rangle \equiv_m \langle B, \leq \rangle$$
 iff $|A| = |B|$ or $|A|, |B| \ge 2^m - 1$.

Proof (\Leftarrow) induction on m (m = 0) trivial (m > 0) If Spoiler chooses $a \in A$ Duplicator answers with $b \in B$ such that

$$(\#elements < a) =_{2^{m-1}-1} (\#elements < b),$$

 $(\#elements > a) =_{2^{m-1}-1} (\#elements > b).$

(where $i =_k j$ means i = j or $i, j \ge k$)

By inductive hypothesis, Duplicator can then continue the game for m-1 rounds.

Back-and-forth equivalence

Example linear orders

$$\langle A, \leq \rangle \equiv_m \langle B, \leq \rangle$$
 iff $|A| = |B|$ or $|A|, |B| \ge 2^m - 1$.

Corollary

There does not exist an FO-formula φ such that

$$\langle A, \leq \rangle \models \varphi$$
 iff $|A|$ is even,

for all finite linear orders.

Words

Word structures

We can represent $u = a_0 \dots a_{n-1} \in \Sigma^*$ as a structure

$$\langle \{0,\ldots,n-1\}, \leq, (P_c)_{c \in \Sigma} \rangle$$
 with $P_c := \{i < n \mid a_i = c \}$.

Lemma

$$u \equiv_m u'$$
 and $v \equiv_m v' \Rightarrow uv \equiv_m u'v'$.

Words

Word structures

We can represent $u = a_0 \dots a_{n-1} \in \Sigma^*$ as a structure

$$\langle \{0,\ldots,n-1\}, \leq, (P_c)_{c \in \Sigma} \rangle$$
 with $P_c := \{i < n \mid a_i = c\}$.

Lemma

$$u \equiv_m u'$$
 and $v \equiv_m v' \Rightarrow uv \equiv_m u'v'$.

Corollary

For $L \subseteq \Sigma^*$ FO-definable, there exists $n \in \mathbb{N}$ such that

$$uv^n w \in L \iff uv^{n+1} w \in L$$
, for all $u, v, w \in \Sigma^*$.

Examples

The following languages are not first-order definable.

• (aa)*

Examples

The following languages are not first-order definable.

- (aa)*
- $\{a^nb^n \mid n \in \mathbb{N}\}$

Examples

The following languages are not first-order definable.

- (aa)*
- $\{a^nb^n \mid n \in \mathbb{N}\}$
- all correctly parenthesised expressions over the alphabet () x

Syntax

- element variables: x, y, z, . . .
- set variables: X, Y, Z, . . .
- atomic formulae: $R(\bar{x})$, x = y, $x \in X$
- boolean operations: ∧, ∨, ¬, →, ↔
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

"The set X is empty."

Syntax

- element variables: x, y, z, . . .
- set variables: X, Y, Z, . . .
- atomic formulae: $R(\bar{x})$, x = y, $x \in X$
- boolean operations: \land , \lor , \neg , \rightarrow , \leftrightarrow
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

- "The set X is empty."
 - $\neg \exists x [x \in X]$
- "X ⊆ Y"

Syntax

- element variables: x, y, z, . . .
- set variables: X, Y, Z, . . .
- atomic formulae: $R(\bar{x})$, x = y, $x \in X$
- boolean operations: ∧, ∨, ¬, →, ↔
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

"The set X is empty."

$$\neg \exists x [x \in X]$$

$$\forall z[z \in X \rightarrow z \in Y]$$

"There exists a path from x to y."

Syntax

- element variables: x, y, z, . . .
- set variables: X, Y, Z, . . .
- atomic formulae: $R(\bar{x})$, x = y, $x \in X$
- boolean operations: ∧, ∨, ¬, →, ↔
- quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example

- "The set X is empty."
 - $\neg \exists x [x \in X]$
- "X ⊂ Y"

$$\forall z[z \in X \rightarrow z \in Y]$$

"There exists a path from x to y."

$$\forall Z [x \in Z \land \forall u \forall v [u \in Z \land E(u, v) \rightarrow v \in Z] \rightarrow y \in Z]$$

Back-and-Forth Equivalence

m-equivalence

$$\mathfrak{A}, \bar{P}, \bar{a} \equiv_{m}^{\mathsf{MSO}} \mathfrak{B}, \bar{Q}, \bar{b}$$
 : iff $\mathfrak{A} \models \varphi(\bar{P}, \bar{a}) \Leftrightarrow \mathfrak{B} \models \varphi(\bar{Q}, \bar{b})$ for all $\varphi(\bar{X}, \bar{x})$ with $\mathsf{qr}(\varphi) \leq m$.

Back-and-Forth Equivalence

m-equivalence

$$\mathfrak{A}, \, \bar{P}, \, \bar{a} \equiv_{m}^{\mathsf{MSO}} \mathfrak{B}, \, \bar{Q}, \, \bar{b}$$
 : iff $\mathfrak{A} \models \varphi(\bar{P}, \bar{a}) \iff \mathfrak{B} \models \varphi(\bar{Q}, \bar{b})$ for all $\varphi(\bar{X}, \bar{x})$ with $\mathsf{qr}(\varphi) \leq m$.

Ehrenfeucht-Fraïssé Game

Both players choose an element or a set in each round.

Back-and-Forth Equivalence

m-equivalence

$$\mathfrak{A}, \, \bar{P}, \, \bar{a} \equiv_{m}^{\mathsf{MSO}} \mathfrak{B}, \, \bar{Q}, \, \bar{b}$$
 : iff $\mathfrak{A} \models \varphi(\bar{P}, \bar{a}) \iff \mathfrak{B} \models \varphi(\bar{Q}, \bar{b})$ for all $\varphi(\bar{X}, \bar{x})$ with $\mathsf{qr}(\varphi) \leq m$.

Ehrenfeucht-Fraïssé Game

Both players choose an element or a set in each round.

Lemma

$$u \equiv_m^{\mathsf{MSO}} u'$$
 and $v \equiv_m^{\mathsf{MSO}} v'$ \Rightarrow $uv \equiv_m^{\mathsf{MSO}} u'v'$.

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi} = \langle Q, \Sigma, \delta, q_0, F \rangle$

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi} = \langle Q, \Sigma, \delta, q_0, F \rangle$ Idea: Given $w = a_0 \cdots a_{n-1}$ compute \equiv_m^{MSO} -classes $[\varepsilon]_m, [a_0]_m, [a_0a_1]_m, \ldots, [a_0a_1 \cdots a_{n-1}]_m$.

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi} = \langle Q, \Sigma, \delta, q_0, F \rangle$

$$[\varepsilon]_m, [a_0]_m, [a_0a_1]_m, \ldots, [a_0a_1\cdots a_{n-1}]_m.$$

•
$$Q := \Sigma^*/\equiv_m^{\mathsf{MSO}}$$

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi} = \langle Q, \Sigma, \delta, q_0, F \rangle$

$$[\varepsilon]_m, [a_0]_m, [a_0a_1]_m, \ldots, [a_0a_1\cdots a_{n-1}]_m.$$

- $Q := \Sigma^*/\equiv_m^{\mathsf{MSO}}$
- $q_0 := [\varepsilon]_m$

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi} = \langle Q, \Sigma, \delta, q_0, F \rangle$

$$[\varepsilon]_m, [a_0]_m, [a_0a_1]_m, \ldots, [a_0a_1 \cdots a_{n-1}]_m.$$

- $Q := \Sigma^*/\equiv_m^{\mathsf{MSO}}$
- $q_o := [\varepsilon]_m$
- $\delta([w]_m, c) := [wc]_m$

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi} = \langle Q, \Sigma, \delta, q_0, F \rangle$

$$[\varepsilon]_m, [a_0]_m, [a_0a_1]_m, \ldots, [a_0a_1\cdots a_{n-1}]_m.$$

- $Q := \Sigma^*/\equiv_m^{\mathsf{MSO}}$
- $q_o := [\varepsilon]_m$
- $\delta([w]_m, c) := [wc]_m$
- $F := \{ [w]_m \mid w \vDash \varphi \}$

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi} = \langle Q, \Sigma, \delta, q_0, F \rangle$

Idea: Given $w = a_0 \cdots a_{n-1}$ compute \equiv_m^{MSO} -classes

$$[\varepsilon]_m, [a_0]_m, [a_0a_1]_m, \ldots, [a_0a_1 \cdots a_{n-1}]_m.$$

- $Q := \Sigma^*/\equiv_m^{\mathsf{MSO}}$
- $q_o := [\varepsilon]_m$
- $\delta([w]_m, c) \coloneqq [wc]_m$
- $F := \{ [w]_m \mid w \vDash \varphi \}$

Theorem

 \mathcal{A}_{φ} accepts a word $w \in \Sigma^*$ if, and only if, $w \models \varphi$.

Given φ of quantifier rank m, construct $\mathcal{A}_{\varphi} = \langle Q, \Sigma, \delta, q_0, F \rangle$

Idea: Given $w = a_0 \cdots a_{n-1}$ compute \equiv_m^{MSO} -classes

$$[\varepsilon]_m, [a_0]_m, [a_0a_1]_m, \ldots, [a_0a_1\cdots a_{n-1}]_m.$$

- $Q := \Sigma^*/\equiv_m^{\mathsf{MSO}}$
- $q_0 := [\varepsilon]_m$
- $\delta([w]_m, c) := [wc]_m$
- $F := \{ [w]_m \mid w \models \varphi \}$

Theorem

 \mathcal{A}_{ω} accepts a word $w \in \Sigma^*$ if, and only if, $w \models \varphi$.

Corollary

 φ is satisfiable (by a finite word) if, and only if, \mathcal{A}_{φ} accepts some word.

$$\varphi_{\mathcal{A}} \coloneqq \exists (Z_q)_{q \in Q} \big[\mathsf{ADM} \land \mathsf{INIT} \land \mathsf{TRANS} \land \mathsf{ACC} \big]$$

$$\varphi_{\mathcal{A}} \coloneqq \exists (Z_q)_{q \in Q} \big[\mathsf{ADM} \land \mathsf{INIT} \land \mathsf{TRANS} \land \mathsf{ACC} \big]$$

$$ADM := \forall x \bigwedge_{p \neq q} \neg (x \in Z_p \land x \in Z_q)$$

$$\varphi_{\mathcal{A}} := \exists (Z_q)_{q \in Q} [\mathsf{ADM} \land \mathsf{INIT} \land \mathsf{TRANS} \land \mathsf{ACC}]$$

$$ADM := \forall x \bigwedge_{p \neq q} \neg (x \in Z_p \land x \in Z_q)$$

$$\mathsf{ACC} \coloneqq \bigvee_{q \in F} [\mathsf{last} \in Z_q]$$

$$\varphi_{\mathcal{A}} \coloneqq \exists (Z_q)_{q \in Q} \big[\mathsf{ADM} \land \mathsf{INIT} \land \mathsf{TRANS} \land \mathsf{ACC} \big]$$

$$ADM := \forall x \bigwedge_{p \neq q} \neg (x \in Z_p \land x \in Z_q)$$

$$\mathsf{ACC} \coloneqq \bigvee_{q \in F} [\mathsf{last} \in Z_q]$$

$$\mathsf{INIT} \coloneqq \bigvee_{c \in \Sigma} \big[P_c \big(\mathsf{first} \big) \land \mathsf{first} \in \mathsf{Z}_{\delta(q_o,c)} \big]$$

$$\varphi_{\mathcal{A}} := \exists (Z_q)_{q \in Q} [\mathsf{ADM} \land \mathsf{INIT} \land \mathsf{TRANS} \land \mathsf{ACC}]$$

TRANS :=
$$\forall x \forall y [y = x + 1 \rightarrow \bigwedge_{c \in \Sigma} \bigwedge_{q \in O} [x \in Z_q \land P_c(y) \rightarrow y \in Z_{\delta(q,c)}]].$$

Given $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ construct φ_A .

$$\varphi_{\mathcal{A}} := \exists (Z_q)_{q \in Q} \big[\mathsf{ADM} \land \mathsf{INIT} \land \mathsf{TRANS} \land \mathsf{ACC} \big]$$

$$\mathsf{TRANS} := \forall x \forall y \big[y = x + \mathbf{1} \to \bigwedge_{c \in \Sigma} \bigwedge_{q \in O} \big[x \in Z_q \land P_c \big(y \big) \to y \in Z_{\delta(q,c)} \big] \big].$$

Theorem

 $w \models \varphi_{\mathcal{A}}$ if, and only if, \mathcal{A} accepts w.

Given $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ construct φ_A .

$$\varphi_{\mathcal{A}} \coloneqq \exists (Z_q)_{q \in Q} \big[\mathsf{ADM} \land \mathsf{INIT} \land \mathsf{TRANS} \land \mathsf{ACC} \big]$$

$$\mathsf{TRANS} := \forall x \forall y \big[y = x + 1 \to \bigwedge_{c \in \Sigma} \bigwedge_{q \in Q} \big[x \in Z_q \land P_c \big(y \big) \to y \in Z_{\delta(q,c)} \big] \big].$$

Theorem

 $w \models \varphi_{\mathcal{A}}$ if, and only if, \mathcal{A} accepts w.

Corollary

A language $L \subseteq \Sigma^*$ is regular if, and only if, it is MSO-definable.

Corollary

A language $L \subseteq \Sigma^*$ is regular if, and only if, it is MSO-definable.

Example

 $L = \{ a^n b^n \mid n \in \mathbb{N} \}$ is not regular.

Corollary

A language $L \subseteq \Sigma^*$ is regular if, and only if, it is MSO-definable.

Example

 $L = \{ a^n b^n \mid n \in \mathbb{N} \}$ is not regular.

Proof

Suppose that $\varphi \in MSO$ defines L.

Corollary

A language $L \subseteq \Sigma^*$ is regular if, and only if, it is MSO-definable.

Example

 $L = \{ a^n b^n \mid n \in \mathbb{N} \}$ is not regular.

Proof

Suppose that $\varphi \in MSO$ defines L.

Set $m := qr(\varphi)$.

Corollary

A language $L \subseteq \Sigma^*$ is regular if, and only if, it is MSO-definable.

Example

 $L = \{ a^n b^n \mid n \in \mathbb{N} \}$ is not regular.

Proof

Suppose that $\varphi \in MSO$ defines L.

Set $m := qr(\varphi)$.

There exist i < k with $a^i \equiv_m^{MSO} a^k$.

Corollary

A language $L \subseteq \Sigma^*$ is regular if, and only if, it is MSO-definable.

Example

$$L = \{ a^n b^n \mid n \in \mathbb{N} \}$$
 is not regular.

Proof

Suppose that $\varphi \in MSO$ defines L.

Set $m := qr(\varphi)$.

There exist i < k with $a^i \equiv_m^{MSO} a^k$.

 $a^ib^i \in L$

Automata

Corollary

A language $L \subseteq \Sigma^*$ is regular if, and only if, it is MSO-definable.

Example

$$L = \{ a^n b^n \mid n \in \mathbb{N} \}$$
 is not regular.

Proof

Suppose that $\varphi \in MSO$ defines L.

Set
$$m := qr(\varphi)$$
.

There exist i < k with $a^i \equiv_m^{MSO} a^k$.

$$a^ib^i \in L$$

$$\Rightarrow a^i b^i \models \varphi$$

Automata

Corollary

A language $L \subseteq \Sigma^*$ is regular if, and only if, it is MSO-definable.

Example

$$L = \{ a^n b^n \mid n \in \mathbb{N} \}$$
 is not regular.

Proof

Suppose that $\varphi \in MSO$ defines L.

Set
$$m := qr(\varphi)$$
.

There exist i < k with $a^i \equiv_m^{MSO} a^k$.

$$a^ib^i \in L$$

$$\Rightarrow a^i b^i \models \varphi$$

$$\Rightarrow a^k b^i \models \varphi$$

Automata

Corollary

A language $L \subseteq \Sigma^*$ is regular if, and only if, it is MSO-definable.

Example

$$L = \{ a^n b^n \mid n \in \mathbb{N} \}$$
 is not regular.

Proof

Suppose that $\varphi \in MSO$ defines L.

Set
$$m := qr(\varphi)$$
.

There exist i < k with $a^i \equiv_m^{MSO} a^k$.

$$a^ib^i \in L$$

$$\Rightarrow a^i b^i \models \varphi$$

$$\Rightarrow a^k b^i \models \varphi$$

$$\Rightarrow a^k b^i \in L$$
 Contradiction.

Gaifman graph

```
\mathcal{G}(\mathfrak{A}) := \langle A, E \rangle where E := \{ \langle c_i, c_j \rangle \mid \bar{c} \in R, c_i \neq c_j \}
d(x, y) distance in \mathcal{G}(\mathfrak{A})
```

Gaifman graph

```
\mathcal{G}(\mathfrak{A}) := \langle A, E \rangle where E := \{ \langle c_i, c_j \rangle \mid \bar{c} \in R, c_i \neq c_j \} d(x, y) distance in \mathcal{G}(\mathfrak{A})
```

Relativisation $\psi^{(r)}(x)$

```
replace \exists y \vartheta by \exists y [d(x, y) < r \land \vartheta]
replace \forall y \vartheta by \forall y [d(x, y) < r \rightarrow \vartheta]
```

Gaifman graph

$$\mathcal{G}(\mathfrak{A}) := \langle A, E \rangle$$
 where $E := \{ \langle c_i, c_j \rangle \mid \bar{c} \in R, c_i \neq c_j \}$ $d(x, y)$ distance in $\mathcal{G}(\mathfrak{A})$

Relativisation $\psi^{(r)}(x)$

replace
$$\exists y \vartheta$$
 by $\exists y [d(x,y) < r \land \vartheta]$
replace $\forall y \vartheta$ by $\forall y [d(x,y) < r \rightarrow \vartheta]$

Basic local sentence

$$\varphi = \exists x_0 \dots x_{n-1} \Big[\bigwedge_{i \neq j} d(x_i, x_j) \ge 2r \wedge \bigwedge_{i < n} \psi^{(r)}(x_i) \Big]$$

Gaifman graph

```
\mathcal{G}(\mathfrak{A}) := \langle A, E \rangle where E := \{ \langle c_i, c_j \rangle \mid \bar{c} \in R, c_i \neq c_j \} d(x, y) distance in \mathcal{G}(\mathfrak{A})
```

Relativisation $\psi^{(r)}(x)$

```
replace \exists y \vartheta by \exists y [d(x, y) < r \land \vartheta]
replace \forall y \vartheta by \forall y [d(x, y) < r \rightarrow \vartheta]
```

Basic local sentence

$$\varphi = \exists x_0 \dots x_{n-1} \Big[\bigwedge_{i \neq j} d(x_i, x_j) \ge 2r \wedge \bigwedge_{i < n} \psi^{(r)}(x_i) \Big]$$

Theorem

Every FO-formula $\varphi(\bar{x})$ is equivalent to a boolean combination of

- basic local sentences and
- formulae of the form $\psi^{(r)}(x_i)$.

Connectivity is not first-order definable.

Connectivity is not first-order definable.

Planarity is not first-order definable.

Planarity is not first-order definable.

Suppose that ${\mathfrak A}$ and ${\mathfrak B}$ satisfy the same basic local sentences up to qr h(r).

```
N(\bar{a}, r) := \{ c \mid d(c, a_i) < r \text{ for some } i \}
```

Suppose that $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).

```
N(\bar{a}, r) := \{ c \mid d(c, a_i) < r \text{ for some } i \}
Claim \qquad N(\bar{a}, 7^r), \, \bar{a} \equiv_{q(r)} N(\bar{b}, 7^r), \, \bar{b} \quad \Rightarrow \quad \mathfrak{A}, \, \bar{a} \equiv_r \mathfrak{B}, \, \bar{b}
```

Suppose that $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).

$$N(\bar{a}, r) := \{ c \mid d(c, a_i) < r \text{ for some } i \}$$

Claim
$$N(\bar{a}, 7^r), \bar{a} \equiv_{g(r)} N(\bar{b}, 7^r), \bar{b} \Rightarrow \mathfrak{A}, \bar{a} \equiv_r \mathfrak{B}, \bar{b}$$

Using this claim, we can proof the theorem as follows.

Let $r := qr(\varphi)$. It is sufficient to show that

$$\varphi(\bar{x}) \equiv \bigvee \{ \chi_{\mathfrak{A},\bar{a}}(\bar{x}) \mid \mathfrak{A} \vDash \varphi(\bar{a}) \},$$

where

$$\begin{split} \chi_{\mathfrak{A},\bar{\mathfrak{a}}}(\bar{x}) &:= \bigwedge \Theta_{\mathfrak{A}} \wedge \bigwedge \Theta'_{\mathfrak{A},\bar{\mathfrak{a}}}(\bar{x})\,, \\ \Theta_{\mathfrak{A}} &:= \left\{ \left. \psi \right. \middle| \left. \psi \right. \mathsf{basic local} \right., \, \mathsf{qr}(\psi) < h(r) \,, \, \mathfrak{A} \vDash \psi \, \right\}, \\ \Theta'_{\mathfrak{A}} &:= \left\{ \left. \psi^{(7^r)}(\bar{x}) \right. \middle| \left. \mathsf{qr}(\psi) < g(r) \,, \, \mathfrak{A} \vDash \psi(\bar{\mathfrak{a}}) \, \right\}. \end{split}$$

Suppose that

- $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).
- $N(\bar{a}, 7^r)$, $\bar{a} \equiv_{q(r)} N(\bar{b}, 7^r)$, \bar{b} implies \mathfrak{A} , $\bar{a} \equiv_r \mathfrak{B}$, \bar{b}

Claim
$$\varphi(\bar{x}) \equiv \bigvee \{ \chi_{\mathfrak{A},\bar{a}}(\bar{x}) \mid \mathfrak{A} \vDash \varphi(\bar{a}) \},$$

$$\chi_{\mathfrak{A},\bar{a}}(\bar{x})\coloneqq \bigwedge \Theta_{\mathfrak{A}} \wedge \bigwedge \Theta'_{\mathfrak{A},\bar{a}}(\bar{x})$$
,

$$\Theta_{\mathfrak{A}} \coloneqq \left\{ \left. \psi \; \middle| \; \psi \; \mathsf{basic local} \right., \; \mathsf{qr}(\psi) < h(r) \,, \; \mathfrak{A} \vDash \psi \, \right\},$$

$$\Theta_{\mathfrak{A}}' \coloneqq \left\{ \left. \psi^{(7^r)}(\bar{x}) \right| \mathsf{qr}(\psi) < g(r) \,,\; \mathfrak{A} \vDash \psi(\bar{a}) \right\}.$$

Suppose that

- $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).
- $N(\bar{a}, 7^r)$, $\bar{a} \equiv_{g(r)} N(\bar{b}, 7^r)$, \bar{b} implies \mathfrak{A} , $\bar{a} \equiv_r \mathfrak{B}$, \bar{b}

Claim
$$\varphi(\bar{x}) \equiv \bigvee \{ \chi_{\mathfrak{A},\bar{a}}(\bar{x}) \mid \mathfrak{A} \vDash \varphi(\bar{a}) \},$$

$$\chi_{\mathfrak{A},\bar{a}}(\bar{x})\coloneqq \bigwedge \Theta_{\mathfrak{A}} \wedge \bigwedge \Theta'_{\mathfrak{A},\bar{a}}(\bar{x})$$
 ,

$$\Theta_{\mathfrak{A}} \coloneqq \left\{ \left. \psi \; \middle| \; \psi \; \mathsf{basic local} \right., \; \mathsf{qr}(\psi) < h(r) \,, \; \mathfrak{A} \vDash \psi \, \right\},$$

$$\Theta_{\mathfrak{A}}' \coloneqq \left\{ \left. \psi^{(7^r)}(\bar{x}) \right| \mathsf{qr}(\psi) < g(r) \,,\; \mathfrak{A} \vDash \psi(\bar{a}) \,\right\}.$$

$Proof(\Rightarrow)$

Suppose that

- $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).
- $N(\bar{a}, 7^r)$, $\bar{a} \equiv_{q(r)} N(\bar{b}, 7^r)$, \bar{b} implies \mathfrak{A} , $\bar{a} \equiv_r \mathfrak{B}$, \bar{b}

Claim
$$\varphi(\bar{x}) \equiv \bigvee \{ \chi_{\mathfrak{A},\bar{a}}(\bar{x}) \mid \mathfrak{A} \vDash \varphi(\bar{a}) \},$$

$$\chi_{\mathfrak{A},\bar{a}}(\bar{x})\coloneqq \bigwedge \Theta_{\mathfrak{A}} \wedge \bigwedge \Theta'_{\mathfrak{A},\bar{a}}(\bar{x})$$
 ,

$$\mathcal{O}_{\mathfrak{A}} \coloneqq \left\{ \left. \psi \; \middle| \; \psi \; \mathsf{basic local} \right., \; \mathsf{qr}(\psi) < h(r) \,, \; \mathfrak{A} \vDash \psi \, \right\},$$

$$\Theta_{\mathfrak{A}}' \coloneqq \left\{ \left. \psi^{(7^r)}(\bar{x}) \right| \mathsf{qr}(\psi) < g(r) \,,\; \mathfrak{A} \vDash \psi(\bar{a}) \,\right\}.$$

Proof (\Rightarrow)

$$\mathfrak{B} \vDash \varphi(\bar{b})$$

Suppose that

- \mathfrak{A} and \mathfrak{B} satisfy the same basic local sentences up to qr h(r).
- $N(\bar{a}, 7^r)$, $\bar{a} \equiv_{q(r)} N(\bar{b}, 7^r)$, \bar{b} implies \mathfrak{A} , $\bar{a} \equiv_r \mathfrak{B}$, \bar{b}

Claim
$$\varphi(\bar{x}) \equiv \bigvee \{ \chi_{\mathfrak{A},\bar{a}}(\bar{x}) \mid \mathfrak{A} \vDash \varphi(\bar{a}) \},$$

$$\chi_{\mathfrak{A},\bar{a}}(\bar{x})\coloneqq \bigwedge \Theta_{\mathfrak{A}} \wedge \bigwedge \Theta'_{\mathfrak{A},\bar{a}}(\bar{x})$$
,

$$\mathcal{O}_{\mathfrak{A}} \coloneqq \left\{ \left. \psi \; \middle| \; \psi \; \mathsf{basic local} \right., \; \mathsf{qr}(\psi) < h(r) \,, \; \mathfrak{A} \vDash \psi \, \right\},$$

$$\Theta_{\mathfrak{A}}' \coloneqq \left\{ \left. \psi^{(7^r)}(\bar{x}) \right| \mathsf{qr}(\psi) < g(r) \,,\; \mathfrak{A} \vDash \psi(\bar{a}) \,\right\}.$$

$Proof(\Rightarrow)$

$$\mathfrak{B} \vDash \varphi(\bar{b})$$

$$\Rightarrow \mathfrak{B} \vDash \chi_{\mathfrak{B},\bar{b}}(\bar{b})$$

Suppose that

- $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).
- $N(\bar{a}, 7^r)$, $\bar{a} \equiv_{q(r)} N(\bar{b}, 7^r)$, \bar{b} implies \mathfrak{A} , $\bar{a} \equiv_r \mathfrak{B}$, \bar{b}

Claim
$$\varphi(\bar{x}) \equiv \bigvee \{ \chi_{\mathfrak{A},\bar{a}}(\bar{x}) \mid \mathfrak{A} \vDash \varphi(\bar{a}) \},$$

$$\chi_{\mathfrak{A},\bar{a}}(\bar{x})\coloneqq \bigwedge \Theta_{\mathfrak{A}} \wedge \bigwedge \Theta'_{\mathfrak{A},\bar{a}}(\bar{x})$$
 ,

$$\Theta_{\mathfrak{A}} \coloneqq \left\{ \psi \mid \psi \text{ basic local, } \operatorname{qr}(\psi) < h(r), \ \mathfrak{A} \vDash \psi \right\},$$

$$\Theta_{\mathfrak{A}}' \coloneqq \left\{ \left. \psi^{(7^r)}(\bar{x}) \right| \mathsf{qr}(\psi) < g(r) \,,\; \mathfrak{A} \vDash \psi(\bar{a}) \,\right\}.$$

Proof (**⇐**)

$$\mathfrak{B} \vDash \chi_{\mathfrak{A},\bar{a}}(\bar{b})$$

Suppose that

- $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).
- $N(\bar{a}, 7^r)$, $\bar{a} \equiv_{q(r)} N(\bar{b}, 7^r)$, \bar{b} implies \mathfrak{A} , $\bar{a} \equiv_r \mathfrak{B}$, \bar{b}

Claim
$$\varphi(\bar{x}) \equiv \bigvee \{ \chi_{\mathfrak{A},\bar{a}}(\bar{x}) \mid \mathfrak{A} \vDash \varphi(\bar{a}) \},$$

$$\begin{split} \chi_{\mathfrak{A},\bar{a}}(\bar{x}) &:= \bigwedge \Theta_{\mathfrak{A}} \wedge \bigwedge \Theta'_{\mathfrak{A},\bar{a}}(\bar{x})\,, \\ \Theta_{\mathfrak{A}} &:= \left\{ \left. \psi \mid \psi \text{ basic local, } \operatorname{qr}(\psi) < h(r) \,, \, \mathfrak{A} \vDash \psi \right. \right\}, \\ \Theta'_{\mathfrak{A}} &:= \left\{ \left. \psi^{(7^r)}(\bar{x}) \mid \operatorname{qr}(\psi) < g(r) \,, \, \mathfrak{A} \vDash \psi(\bar{a}) \right. \right\}. \end{split}$$

$Proof(\Leftarrow)$

$$\mathfrak{B} \vDash \chi_{\mathfrak{A},\bar{a}}(\bar{b})$$

 $\Rightarrow \mathfrak{B}$ satisfies the same basic local sentences as \mathfrak{A} and $N(\bar{b}, 7^r), \bar{b} \equiv_{q(r)} N(\bar{a}, 7^r), \bar{a}$

Suppose that

- \mathfrak{A} and \mathfrak{B} satisfy the same basic local sentences up to qr h(r).
- $N(\bar{a}, 7^r)$, $\bar{a} \equiv_{q(r)} N(\bar{b}, 7^r)$, \bar{b} implies \mathfrak{A} , $\bar{a} \equiv_r \mathfrak{B}$, \bar{b}

Claim
$$\varphi(\bar{x}) \equiv \bigvee \{ \chi_{\mathfrak{A},\bar{a}}(\bar{x}) \mid \mathfrak{A} \vDash \varphi(\bar{a}) \},$$

$$\chi_{\mathfrak{A},\bar{a}}(\bar{x}) := \bigwedge \Theta_{\mathfrak{A}} \wedge \bigwedge \Theta'_{\mathfrak{A},\bar{a}}(\bar{x}),$$

$$\mathcal{O}_{\mathfrak{A}} \coloneqq \left\{ \left. \psi \; \middle| \; \psi \; \mathsf{basic local} \right., \; \mathsf{qr}(\psi) < h(r) \,, \; \mathfrak{A} \vDash \psi \, \right\},$$

$$\Theta_{\mathfrak{A}}' \coloneqq \left\{ \left. \psi^{(7^r)}(\bar{x}) \right| \mathsf{qr}(\psi) < g(r) \,,\; \mathfrak{A} \vDash \psi(\bar{a}) \,\right\}.$$

$Proof(\Leftarrow)$

$$\mathfrak{B} \vDash \chi_{\mathfrak{A},\bar{a}}(\bar{b})$$

- $\Rightarrow \mathfrak{B}$ satisfies the same basic local sentences as \mathfrak{A} and $N(\bar{b}, 7^r), \bar{b} \equiv_{a(r)} N(\bar{a}, 7^r), \bar{a}$
- $\Rightarrow \mathfrak{B}, \bar{b} \equiv_r \mathfrak{A}, \bar{a}$

Suppose that

- \mathfrak{A} and \mathfrak{B} satisfy the same basic local sentences up to qr h(r).
- $N(\bar{a}, 7^r)$, $\bar{a} \equiv_{q(r)} N(\bar{b}, 7^r)$, \bar{b} implies \mathfrak{A} , $\bar{a} \equiv_r \mathfrak{B}$, \bar{b}

Claim
$$\varphi(\bar{x}) \equiv \bigvee \{ \chi_{\mathfrak{A},\bar{a}}(\bar{x}) \mid \mathfrak{A} \vDash \varphi(\bar{a}) \},$$

$$\chi_{\mathfrak{A},\bar{a}}(\bar{x})\coloneqq \bigwedge \Theta_{\mathfrak{A}} \wedge \bigwedge \Theta'_{\mathfrak{A},\bar{a}}(\bar{x})$$
 ,

$$\Theta_{\mathfrak{A}} \coloneqq \left\{ \left. \psi \; \middle| \; \psi \; \mathsf{basic local} \right., \; \mathsf{qr}(\psi) < h(r) \,, \; \mathfrak{A} \vDash \psi \, \right\},$$

$$\Theta_{\mathfrak{A}}' \coloneqq \left\{ \left. \psi^{(7^r)}(\bar{x}) \right| \mathsf{qr}(\psi) < g(r) \,,\; \mathfrak{A} \vDash \psi(\bar{a}) \right\}.$$

$Proof(\Leftarrow)$

$$\mathfrak{B} \vDash \chi_{\mathfrak{A},\bar{a}}(\bar{b})$$

$$\Rightarrow \mathfrak{B}$$
 satisfies the same basic local sentences as \mathfrak{A} and $N(\bar{b}, 7^r), \bar{b} \equiv_{a(r)} N(\bar{a}, 7^r), \bar{a}$

$$\Rightarrow \mathfrak{B}, \bar{b} \equiv_r \mathfrak{A}, \bar{a}$$

$$\Rightarrow \mathfrak{B} \models \varphi(\bar{b})$$

Suppose that $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).

$$\begin{split} N(\bar{a},r) &:= \{\, c \mid d(c,a_i) < r \text{ for some } i \,\} \\ \textbf{Claim} \quad N(\bar{a},7^r), \, \bar{a} &\equiv_{g(r)} N(\bar{b},7^r), \, \bar{b} \quad \Rightarrow \quad \mathfrak{A}, \, \bar{a} \equiv_r \mathfrak{B}, \, \bar{b} \\ \textbf{Claim} \quad \text{There exists } \psi_{\bar{a},r,m}(\bar{x}) \text{ such that} \\ \mathfrak{B} &\models \psi_{\bar{a},r,m}(\bar{b}) \quad \text{iff} \quad N(\bar{b},r), \, \bar{b} \equiv_m N(\bar{a},r), \, \bar{a} \end{split}$$

Suppose that $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).

$$N(\bar{a}, r) := \{ c \mid d(c, a_i) < r \text{ for some } i \}$$

Claim
$$N(\bar{a}, 7^r), \bar{a} \equiv_{g(r)} N(\bar{b}, 7^r), \bar{b} \Rightarrow \mathfrak{A}, \bar{a} \equiv_r \mathfrak{B}, \bar{b}$$

Claim There exists $\psi_{\bar{a},r,m}(\bar{x})$ such that

$$\mathfrak{B} \vDash \psi_{\bar{a},r,m}(\bar{b}) \quad \text{ iff } \quad N(\bar{b},r), \bar{b} \equiv_m N(\bar{a},r), \bar{a}$$

Set

$$\psi_{\bar{a},r,m} := \bigwedge \Theta$$

where

$$\Theta := \left\{ \vartheta^{(r)}(\bar{x}) \mid \operatorname{qr}(\vartheta) \leq m, \ N(\bar{a}, r) \vDash \vartheta(\bar{a}) \right\}$$

Suppose that $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).

$$N(\bar{a},r) := \{ c \mid d(c,a_i) < r \text{ for some } i \}$$

Claim $N(\bar{a},7^r), \bar{a} \equiv_{g(r)} N(\bar{b},7^r), \bar{b} \Rightarrow \mathfrak{A}, \bar{a} \equiv_r \mathfrak{B}, \bar{b}$
Induction on r

Suppose that $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).

$$\begin{split} N(\bar{a},r) &\coloneqq \{\, c \mid d(c,a_i) < r \text{ for some } i \,\} \\ \textbf{Claim} \quad N(\bar{a},7^r), \, \bar{a} &\equiv_{g(r)} N(\bar{b},7^r), \, \bar{b} \quad \Rightarrow \quad \mathfrak{A}, \, \bar{a} &\equiv_{r} \mathfrak{B}, \, \bar{b} \\ \text{Induction on } r \\ (r=0) \ N(\bar{a},1) &\equiv_{0} N(\bar{b},1) \ \Rightarrow \ \mathfrak{A}, \, \bar{a} &\equiv_{0} \mathfrak{B}, \, \bar{b} \end{split}$$

Suppose that ${\mathfrak A}$ and ${\mathfrak B}$ satisfy the same basic local sentences up to qr h(r).

$$\begin{split} N(\bar{a},r) &\coloneqq \{\, c \mid d(c,a_i) < r \text{ for some } i \,\} \\ \textbf{Claim} \quad N(\bar{a},7^r), \, \bar{a} &\equiv_{g(r)} N(\bar{b},7^r), \, \bar{b} \quad \Rightarrow \quad \mathfrak{A}, \, \bar{a} \equiv_r \mathfrak{B}, \, \bar{b} \\ \text{Induction on } r \\ (r+1) \text{ Fix } c \in A. \end{split}$$

Suppose that $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to qr h(r).

$$N(\bar{a}, r) := \{ c \mid d(c, a_i) < r \text{ for some } i \}$$

Claim
$$N(\bar{a}, 7^r), \bar{a} \equiv_{g(r)} N(\bar{b}, 7^r), \bar{b} \Rightarrow \mathfrak{A}, \bar{a} \equiv_r \mathfrak{B}, \bar{b}$$

Induction on r

$$(r+1)$$
 Fix $c \in A$.

Case 1
$$c \in N(\bar{a}, 2 \cdot 7^r)$$

(c is close to the \bar{a})

Suppose that $\mathfrak A$ and $\mathfrak B$ satisfy the same basic local sentences up to $\operatorname{qr} h(r)$.

$$N(\bar{a}, r) := \{ c \mid d(c, a_i) < r \text{ for some } i \}$$

Claim
$$N(\bar{a}, 7^r), \bar{a} \equiv_{q(r)} N(\bar{b}, 7^r), \bar{b} \Rightarrow \mathfrak{A}, \bar{a} \equiv_r \mathfrak{B}, \bar{b}$$

Induction on r

$$(r+1)$$
 Fix $c \in A$.

Case 1
$$c \in N(\bar{a}, 2 \cdot 7^r)$$

Then $N(c, 7^r) \subseteq N(\bar{a}, 7^{r+1})$ and

$$N(\bar{a}, 7^{r+1}), \bar{a} \equiv_{g(r)+k+m+1} N(\bar{b}, 7^{r+1}), \bar{b}$$

 $\Rightarrow N(\bar{a}, 7^{r+1}), \bar{a}c \equiv_{g(r)+m} N(\bar{b}, 7^{r+1}), \bar{b}d$ for some $d \in N(\bar{b}, 2 \cdot 7^r),$
 $\Rightarrow N(\bar{a}c, 7^r), \bar{a}c \equiv_{g(r)} N(\bar{b}d, 7^r), \bar{b}d.$

(c is close to the \bar{a})

 $g(r+1) \ge g(r) + k + m + 1$ where k, m are the quantifier-ranks of the formulae defining $N(\bar{a}, 2 \cdot 7^r)$ and $N(\bar{a}c, 7^r)$.

Case 2 $c \notin N(\bar{a}, 2 \cdot 7^r)$

(c is not close to the \bar{a})

Case 2
$$c \notin N(\bar{a}, 2 \cdot 7^r)$$

(c is not close to the \bar{a})

$$\vartheta_k(\bar{x}) \coloneqq \bigwedge_{i \neq j} d(x_i, x_j) \ge 4 \cdot 7^r \wedge \bigwedge_i \left[N(x_i, 7^r) \equiv_{g(r)} N(c, 7^r) \right].$$

Case 2
$$c \notin N(\bar{a}, 2 \cdot 7^r)$$

(c is not close to the \bar{a})

$$\vartheta_k(\bar{x})\coloneqq \bigwedge_{i\neq j} d(x_i,x_j) \geq 4\cdot 7^r \wedge \bigwedge_i \big[N(x_i,7^r)\equiv_{g(r)} N(c,7^r)\big].$$

Let k be maximal such that $N(\bar{a}, 2 \cdot 7^r)$ contains k elements \bar{c}' with

$$N(\bar{a},7^{r+1}) \vDash \vartheta_k(\bar{c}').$$

(Note that $k \leq |\bar{a}|$.)

Case 2
$$c \notin N(\bar{a}, 2 \cdot 7^r)$$

(c is not close to the \bar{a})

$$\vartheta_k(\bar{x}) \coloneqq \bigwedge_{i \neq j} d(x_i, x_j) \ge 4 \cdot 7^r \wedge \bigwedge_i [N(x_i, 7^r) \equiv_{g(r)} N(c, 7^r)].$$

Let k be maximal such that $N(\bar{a}, 2 \cdot 7^r)$ contains k elements \bar{c}' with

$$N(\bar{a},7^{r+1}) \vDash \vartheta_k(\bar{c}').$$

(Note that $k \leq |\bar{a}|$.)

 $\Rightarrow k$ is also the maximum for $N(\bar{b}, 7^{r+1})$

Case 2 a
$$\mathfrak{B} \models \exists \bar{x} \vartheta_{k+1}(\bar{x})$$

(c is far away from the \bar{a})

Case 2
$$c \notin N(\bar{a}, 2 \cdot 7^r)$$

(c is not close to the \bar{a})

$$\vartheta_k(\bar{x}) \coloneqq \bigwedge_{i \neq j} d(x_i, x_j) \ge 4 \cdot 7^r \wedge \bigwedge_i [N(x_i, 7^r) \equiv_{g(r)} N(c, 7^r)].$$

Let k be maximal such that $N(\bar{a}, 2 \cdot 7^r)$ contains k elements \bar{c}' with

$$N(\bar{a},7^{r+1}) = \vartheta_k(\bar{c}').$$

(Note that $k \leq |\bar{a}|$.)

 $\Rightarrow k$ is also the maximum for $N(\bar{b}, 7^{r+1})$

Case 2 a
$$\mathfrak{B} \models \exists \bar{x} \vartheta_{k+1}(\bar{x})$$

(c is far away from the \bar{a})

Then there is some $d \notin N(\bar{b}, 2 \cdot 7^r)$ with

$$N(d,7^r) \equiv_{g(r)} N(c,7^r)$$
.

Case 2 $c \notin N(\bar{a}, 2 \cdot 7^r)$

$$\vartheta_k(\bar{x}) := \bigwedge_{i \neq j} d(x_i, x_j) \geq 4 \cdot 7^r \wedge \bigwedge_i \left[N(x_i, 7^r) \equiv_{g(r)} N(c, 7^r) \right].$$

Case 2 b $\mathfrak{B} \models \neg \exists \bar{x} \vartheta_{k+1}(\bar{x})$ (c is at medium distance from the \bar{a})

Case 2 $c \notin N(\bar{a}, 2 \cdot 7^r)$

$$\vartheta_k(\bar{x}) := \bigwedge_{i \neq j} d(x_i, x_j) \geq 4 \cdot 7^r \wedge \bigwedge_i \left[N(x_i, 7^r) \equiv_{g(r)} N(c, 7^r) \right].$$

Case 2 b
$$\mathfrak{B} \models \neg \exists \bar{x} \vartheta_{k+1}(\bar{x})$$
 (c is at medium distance from the \bar{a}) $\Rightarrow \mathfrak{A} \models \neg \exists \bar{x} \vartheta_{k+1}(\bar{x})$

Case 2 $c \notin N(\bar{a}, 2 \cdot 7^r)$

$$\vartheta_k(\bar{x}) \coloneqq \bigwedge_{i \neq j} d(x_i, x_j) \ge 4 \cdot 7^r \wedge \bigwedge_i [N(x_i, 7^r) \equiv_{g(r)} N(c, 7^r)].$$

Case 2 b
$$\mathfrak{B} \models \neg \exists \bar{x} \vartheta_{k+1}(\bar{x})$$
 (c is at medium distance from the \bar{a})
 $\Rightarrow \mathfrak{A} \models \neg \exists \bar{x} \vartheta_{k+1}(\bar{x})$

$$\Rightarrow c \in N(\bar{a}, 7^{r+1}) \text{ satisfies } 2 \cdot 7^r \le d(c, a_i) < 6 \cdot 7^r$$

Case 2
$$c \notin N(\bar{a}, 2 \cdot 7^r)$$

$$\vartheta_k(\bar{x}) \coloneqq \bigwedge_{i \neq j} d(x_i, x_j) \ge 4 \cdot 7^r \wedge \bigwedge_i \left[N(x_i, 7^r) \equiv_{g(r)} N(c, 7^r) \right].$$

Case 2 b
$$\mathfrak{B} \models \neg \exists \bar{x} \vartheta_{k+1}(\bar{x})$$
 (c is at medium distance from the \bar{a})

$$\Rightarrow \mathfrak{A} \vDash \neg \exists \bar{x} \vartheta_{k+1}(\bar{x})$$

$$\Rightarrow c \in N(\bar{a}, 7^{r+1})$$
 satisfies $2 \cdot 7^r \le d(c, a_i) < 6 \cdot 7^r$

$$\Rightarrow$$
 There is some $d \in N(\bar{b}, 7^{r+1})$ such that

$$2 \cdot 7^r \le d(d, b_i) < 6 \cdot 7^r$$
 and $N(d, 7^r) \equiv_{q(r)} N(c, 7^r)$.