|IAo08: Computational Logic
7. Modal Logic

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Basic Concepts

Transition Systems
directed graph & = (S, (Ea)aeas (Pi)iets so) with

| 2

| 2

| 2

| 2

states S

initial state s, € S

edge relations £, with edge colours a ¢ A (‘actions’)
unary predicates P; with vertex colours i ¢ | (‘properties’)

a
o s

b b

a, b C«—o:)a
g b p

Modal logic

Propositional logic with modal operators

» (a)e ‘there exists an a-successor where ¢ holds’

» [a]le ‘¢ holdsin every a-successor’

Notation: <, O¢ if there are no edge labels

Formal semantics

S,sEP
S,sEQAY
S,s=EpVvy
S,sE-
S,skE=(a)p
S,skE[a]e

seP

S,seEpand S, sE ¢

S, sEporG,s=y

G, sEe

thereiss - tsuchthat &, t E ¢
foralls -9 t, wehave 5, tE ¢

Examples

PA<&Q ‘The stateisin P and there exists a transition to Q.’

[a]L ‘The state has no outgoing a-transition.’

Interpretations
» Temporal Logic talks about time:

> states: points in time (discrete/continuous)
» & ‘sometime in the future ¢ holds’
» O¢@ ‘always in the future ¢ holds’

» Epistemic Logic talks about knowledge:

> states: possible worlds
» O@ ‘¢ might be true’
» Op ‘¢iscertainly true’

Examples: Temporal Logic

system & = (S, <, P)
» “P never holds.”

Examples: Temporal Logic

system & = (S, <, P)
» “P never holds.”
—|P A= <> P

» “After every P there is some Q.”

Examples: Temporal Logic

system & = (S, <, P)
» “P never holds.”
—|P A~ <> P

» “After every P there is some Q.”
(P> 0Q)AD(P~ Q)
» “Once P holds, it holds forever.”

Examples: Temporal Logic

system & = (S, <, P)
» “P never holds.”
—|P A~ <> P

» “After every P there is some Q.”
(P—> Q) AD(P > 0Q)

» “Once P holds, it holds forever.”
(P—>0oP)Ao(P—0OP)

» “There are infinitely many P.” (for the order (N, <))

Examples: Temporal Logic

system & = (S, <, P)
» “P never holds.”
“-PA-OP
» “After every P there is some Q.”
(P—> Q) AD(P > 0Q)
» “Once P holds, it holds forever.”
(P—>0oP)Ao(P—0OP)

» “There are infinitely many P.” (for the order (N, <))
ooP

Translation to first-order logic

Proposition

For every formula ¢ of propositional modal logic, there exists a
formula ¢* (x) of first-order logic such that

S,sEp iff SE@'(s).

Proof

Translation to first-order logic

Proposition

For every formula ¢ of propositional modal logic, there exists a
formula ¢* (x) of first-order logic such that

S,sEp iff SE@'(s).
Proof

P* = P(x)
(@AY)* = @"(x) Ap™(x)
(V) = ¢ (x) v~ (x)
(~@)" = =" (x)
({a)p)™ = Fy[Ea(x, y) A @™ (y)]
([ale)* = Vy[Ea(x,y) = ¢" ()]

Bisimulation
S and T transition systems
Z ¢ S x T is a bisimulation if, for all (s, t) € Z,
(local) seP < teP
(forth) foreverys =9 s’, exists t =7 t" with (s',t") € Z,
(back) foreveryt —°t’, exists s > s’ with (s, t’) € Z.
S, s and T, t are bisimilar if there is a bisimulation Z with (s, t) € Z.

z

S t
a a
v Z v
s’ t’

Examples

Examples

Examples

A

Examples

Unravelling

S lAQ u(e)l
TN
7N
YN TN

S and U (&) are bisimilar.

Bisimulation invariance

Theorem

Two finite transition systems S, s and T, t are bisimilar if, and only

if,
S,sEp < I teo, for every modal formula ¢ .

Proof (for =) inductionon ¢

Bisimulation invariance

Theorem

Two finite transition systems S, s and T, t are bisimilar if, and only

if,

S,sEp < I teo, for every modal formula ¢ .

Proof (for =) inductionon ¢
(p=P)seP<tecP

Bisimulation invariance

Theorem
Two finite transition systems S, s and T, t are bisimilar if, and only

if,

S,sEp < I teo, for every modal formula ¢ .

Proof (for =) inductionon ¢
(p=P)seP<tecP
(boolean combinations) by inductive hypothesis

Bisimulation invariance

Theorem
Two finite transition systems S, s and T, t are bisimilar if, and only

if,

S,sEp < I teo, for every modal formula ¢ .

Proof (for =) inductionon ¢
(p=P)seP<tecP
(boolean combinations) by inductive hypothesis

(p=(a)p) &, sk (a)yp

Bisimulation invariance

Theorem
Two finite transition systems S, s and T, t are bisimilar if, and only
if,

S,sEp < I teo, for every modal formula ¢ .

Proof (for =) inductionon ¢
(p=P)seP<tecP

(boolean combinations) by inductive hypothesis
(¢ =(a)y) S, s =(a)p

=ex.s >9s'withS,s" = ¢

Bisimulation invariance

Theorem

Two finite transition systems S, s and T, t are bisimilar if, and only

if,
S,sEp < I teo, for every modal formula ¢ .

Proof (for =) inductionon ¢
(p=P)seP<tecP

(boolean combinations) by inductive hypothesis
(9= (a)p) &, 5= (a)y

=ex.s >9s'withS,s" = ¢

S,s~FT,t = ex.t->%twiths,s'~F, t

Bisimulation invariance

Theorem

Two finite transition systems S, s and T, t are bisimilar if, and only

if,
S,sEp < I teo, for every modal formula ¢ .

Proof (for =) inductionon ¢
(p=P)seP<tecP

(boolean combinations) by inductive hypothesis
(9= (a)p) &, 5= (a)y

=ex.s >9s'withS,s" = ¢

S,s~FT,t = ex.t->%twiths,s'~F, t
=T, t'=y

Bisimulation invariance

Theorem

Two finite transition systems S, s and T, t are bisimilar if, and only

if,
S,sEp < I teo, for every modal formula ¢ .

Proof (for =) inductionon ¢
(p=P)seP<tecP

(boolean combinations) by inductive hypothesis
(9= (a)p) &, 5= (a)y

=ex.s >9s'withS,s" = ¢

S,s~FT,t = ex.t->%twiths,s'~F, t
=T, t'=y

=T, tEe(a)yp

Bisimulation invariance

Theorem

Two finite transition systems S, s and T, t are bisimilar if, and only
if,

S,sEp < T teo, for every modal formula ¢ .

Theorem

Every satisfiable modal formula has a model that is a finite tree.

Bisimulation invariance

Theorem

Two finite transition systems S, s and T, t are bisimilar if, and only
if,

S,sEp < T teo, for every modal formula ¢ .

Theorem

Every satisfiable modal formula has a model that is a finite tree.

Definition
A formula ¢(x) is bisimulation invariant if
S,s~%,t implies SE@(s) = TE(t).

Theorem

A first-order formula ¢ is equivalent to a modal formula if, and only
if, it is bisimulation invariant.

First-Order Modal Logic

Syntax
first-order logic with modal operators (a)¢ and [a]¢

First-Order Modal Logic

Syntax
first-order logic with modal operators (a)¢ and [a]¢

Models

transistion systems where each state s is labelled with a
S -structure 2(such that

s >%t implies AscA;

First-Order Modal Logic

Syntax
first-order logic with modal operators (a)¢ and [a]¢

Models

transistion systems where each state s is labelled with a
S -structure 2(such that

s >%t implies AscA;
Examples

» OVxe(x) - VxO@(x) is valid.
» VxO@(x) - OVxe(x) is not valid.

Tableaux

The Entailment Relation

Consequence

 is a consequence of I (" = ¢) if, and only if, for all transition
systems G,

S,s=¢, forallseSandgerl,
implies that

S,sey, forallseSs.

Tableau Proofs

Statements
SEQ SEQ s>t

s, t state labels, ¢ a modal formula

Rules
SEQ

/N

SEWo T s 9,

Tableaux

Construction

A tableau for a formula ¢ is constructed as follows:

| 2

| 2

| 2

| 2

| 2

start with s, & @

choose a branch of the tree

choose a statement s = (/s ¢ on the branch
choose a rule with head s = ¢/s # ¢

add it at the bottom of the branch

repeat until every branch contains both statements s = ¢ and
s i | for some formula ¢

Tableaux

Construction

A tableau for a formula ¢ is constructed as follows:

| 2

| 2

| 2

| 2

| 2

| 2

start with s, & @

choose a branch of the tree

choose a statement s = (/s ¢ on the branch
choose a rule with head s = ¢/s # ¢

add it at the bottom of the branch

repeat until every branch contains both statements s = ¢ and
s i | for some formula ¢

Tableaux with premises I

| 2

choose a branch, a state s on the branch, a premise ¢ € I, and
add s = ¢ to the branch

Rules

SE - S -
sJ@ SEQ
SEQAY SEQAY SEQVY SEQVY
SEQ SHE Q@ SEYP SFEQ SEY SJ¢
siw s;w
SEQ@—>Y SEQ—>Y SEQ@ <Y SEQ <Y
SHE Q@ SEY slzl(p SEQ SHE Q@ slz(p/\sl;t(p
S; si¢ séw séw si¢

sE(a)e s (a)o sE[a]e stﬁ%a]cp

| |
at) t'E @ s >0t

|
S —>

| |
tE@ t# o
SE VX S VX S E dxe s i dxo

sE@x—u] sE@x—c] sE@x—c] sE@x—u]

t a new state, t’ every state with entry s -9 t’ on the branch,
c a new constant symbol, u an arbitrary term

Example = 0(¢p — ¢) — (0@ - OY)

Example = 0(¢p — ¢) — (0@ - OY)
s#EO(e —> ¢) > (Op »> OY)
s'=D(<(HtP)
S ¥ Oe — 0Oy
sEDP

S ¥ Oy

Example ¢ = O¢

Example ¢ = O¢

Example = OVxp - VxO o

Example = OVxp - VxO o

sSEOVXe - VxOg

SEOVXe

SEVXOQ

s#EOp[x — c]

s—t

t# @[x—c]

tE Vxop

te=@[x—c]

Soundness and Completeness

Theorem

A modal formula ¢ is a consequence of I if, and only if, there exists a
tableau T for ¢ with premises I where every branch is contradictory.

Soundness and Completeness

Theorem

A modal formula ¢ is a consequence of I if, and only if, there exists a
tableau T for ¢ with premises I where every branch is contradictory.

Theorem

Satisfiability for propositional modal logic is in deterministic linear
space.

Theorem

Satisfiability for first-order modal logic is undecidable.

Temporal Logics

Linear Temporal Logic (LTL)

Speaks about paths. P—e—e—P,Q—Q—0—>-

Syntax
» atomic predicates P, Q, . ..
» boolean operations A, v, -
> next X¢
> until Uy
> finally Fp := TUg
» generally G := -F-¢

Examples
FP a state in P is reachable
GFP we can reach infinitely many states in P

(=P)U(P A Q) the first reachable state in Pis alsoin Q

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:
» L can be defined in LTL.
» L can be defined in first-order logic.

» L can be defined by a star-free regular expression.

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:
» L can be defined in LTL.
» L can be defined in first-order logic.

» L can be defined by a star-free regular expression.

Translation LTL to FO

P* := P(x)
(@Ag) =@ (x) A 9p™(x)
(V)" = ¢"(x) V' (x)
(-9)" = —9"(x)
(X)* = Fy[x<yn-Fz(x<zrz<y)ro*(y)]
(pUy)™ = Jy[x<ynyp (y)avVzlx<zaz<y — ¢*(2)]]

Linear Temporal Logic (LTL)
Theorem

Satisfiablity of LTL formulae is PSPACE-complete.

Theorem

Model checking G, s = ¢ for LTL is PSPACE-complete. It can be
donein

time O(|S]- 290D or space O((|¢| + log|S])?).

Linear Temporal Logic (LTL)

Theorem

Satisfiablity of LTL formulae is PSPACE-complete.

Theorem

Model checking G, s = ¢ for LTL is PSPACE-complete. It can be
donein

time O(|S]- 290D or space O((|¢| + log|S])?).

Formula complexity: PSPACE-complete
Data complexity: NLOGSPACE-complete

Computation Tree Logic (CTL and CTL¥)

Applies LTL-formulae to the branches of a tree.

Syntax (of CTL*)
» state formulae ¢:

pu=Plornolove|-p|Ap|EY

» path formulae ¢:
=@ APV |-¢[Xp[pUyp|Fyp|GCy

Examples
EFP a state in P is reachable
AFP every branch contains a state in P
EGFP thereis a branch with infinitely many P
EGEFP thereis a branch such that we can reach P from every
of its states

Computation Tree Logic (CTL and CTL¥)

Theorem

Satisfiability for CTL is EXPTIME-complete.

Model checking S, s = ¢ for CTL is P-complete. It can be done in
time O(|g|-|s]) or space O(|g|-log? (o] -[s])).

Data complexity: NLOGSPACE-complete

Computation Tree Logic (CTL and CTL¥)

Theorem
Satisfiability for CTL is EXPTIME-complete.
Model checking S, s = ¢ for CTL is P-complete. It can be done in

time O(||-|s]) or space O(jg|-log? ([g|-|S])).
Data complexity: NLOGSPACE-complete

Theorem
Satisfiability for CTL* is 2EXPTIME-complete.

Model checking S, s = ¢ for CTL* is PSPACE-complete. It can be
donein

timeO(|S|2-20(|"’|)) or space O(|o|(|¢| + log|S])?).

Formula complexity: PSPACE-complete
Data complexity: NLOGSPACE-complete

Fixed points

Theorem (Knaster, Tarski)

Let (A, <) be a complete partial order and f : A — A monotone.
Then f has a least and a greatest fixed point and

fp(f) = lim f*(1) and gfp(f) = lim f*(7)

Fixed points

Theorem (Knaster, Tarski)

Let (A, <) be a complete partial order and f : A — A monotone.
Then f has a least and a greatest fixed point and

fp(f) = lim f*(1) and gfp(f) = lim f*(7)

Examples (£(N), c)
«f(X):=(X~A)uB

Fixed points

Theorem (Knaster, Tarski)

Let (A, <) be a complete partial order and f : A — A monotone.
Then f has a least and a greatest fixed point and

fp(f) = lim f*(1) and gfp(f) = lim f*(7)

Examples (£(N), c)
«f(X):=(X~A)uB

fp(f) =B and gfp(f)=(N\A)uB
f(X):={ylysxeX}

Fixed points

Theorem (Knaster, Tarski)
Let (A, <) be a complete partial order and f : A — A monotone.
Then f has a least and a greatest fixed point and

fp(f) = lim f*(1) and gfp(f) = lim f*(7)

Examples (£(N), c)
«f(X):=(X~A)uB
fp(f) =B and gfp(f)=(N\A)uB
FO0 = {yly<xex)
fixed points: &, {o}, {0,1},..., {o,...,n},..., N
<f(X) =N\ X

Fixed points

Theorem (Knaster, Tarski)

Let (A, <) be a complete partial order and f : A — A monotone.
Then f has a least and a greatest fixed point and

fp(f) = lim f*(1) and gfp(f) = lim f*(7)

Examples (£(N), c)
«f(X):=(X~A)uB
fp(f) =B and gfp(f)=(N\A)uB
SFO0 = {yly<xeX)
fixed points: &, {o}, {0,1},..., {o,...,n},..., N
«f(X):=N~xX hasno fixed points

Ordinals

0,1,23,...

Ordinals

0,1,23... 0

Ordinals

0,1,23...0, W+1, W+2,...

Ordinals

0,1,2,3...0, W+1, W+2,... W+ W=w2

Ordinals

0,1,23...0, W+, W+2,... 0 +W=wW2 W2+1, W2+2,...

Ordinals

0,1,23...0, W+, W+2,... 0 +W=wW2 W2+1, W2+2,...
w3,... W4,... W5, ...

Ordinals

0,1,23...0, W+, W+2,... 0 +W=wW2 W2+1, W2+2,...
W3,... W4, ... W5,... WW = w?

Ordinals

0,1,23...0, W+, W+2,... 0 +W=wW2 W2+1, W2+2,...
W3,... W4, ... W5,... Ww=w>,...w3,...w%...

Ordinals

0,1,23...0, W+, W+2,... 0 +W=wW2 W2+1, W2+2,...

W3,... W4, ... W5,... Ww=w>,...w3,...w%...

ww

Ordinals

0,1,2,3,... 0, W+1, W+2,... +W=w2 W2+1, W2+2,...
2
W3,... W4, ... W5,... WW=w>...w3,...w4...

w
w w

w w w

w®, ... 0¥, .. w? ...

Ordinals

0,1,23...0, W+, W+2,... 0 +W=wW2 W2+1, W2+2,...
W3,... W4, ... W5,... Ww=w>,...w3,...w%...

w
w w
w? ... w? . w? ...

Ordinals

0,1,23...0, W+, W+2,... 0 +W=wW2 W2+1, W2+2,...
W3,... W4, ... W5,... Ww=w>,...w3,...w%...

w
w w
W ... w? . w? L. Wy ... Wy ...

Ordinals

0,1,2,3,... 0, W+1, W+2,... +W=w2 W2+1, W2+2,...
2
W3, W4y ... W5, ... W0 =W . w3, wh, L.
w

w w w?
w®, ... w®, . w? L Wy, Wy ...

3 Kinds
.0

Ordinals

0,1,2,3,... 0, W+1, W+2,... +W=w2 W2+1, W2+2,...
2
w3,...oo4,...w5,...www:w,...w3,...w4,...
w

w
W ... w? . w? L. Wy ... Wy ...

3 Kinds
.0
. successor a + 1

Ordinals

0,1,23...0, W+, W+2,... 0 +W=wW2 W2+1, W2+2,...
W3,... W4, ... W5,... Ww=w>,...w3,...w%...
w
w

w
W ... w? . w? L. Wy ... Wy ...

3 Kinds
.0
* successor o + 1
- limit 6

Ordinals

0,1,23...0, W+, W+2,... 0 +W=wW2 W2+1, W2+2,...
w3,...w4,...w5,..;uww:w2,...w3,...w4,...
w

w w w?
w®, ... w®, . w0, .. Wy, Way...

3 Kinds
.0
* successor o + 1
- limit 6

Proposition

Every non-empty set of ordinals has a least element.

Ordinals

0,1,2,3,... 0, W+1, W+2,... 0+W=w2 W2+1, W2+2,...
2
w3,...oo4,...w5,...www:w,...w3,...w4,...
w

w w w?®
w®, ... w®, . w? L Wy, ... Wy ...

3 Kinds
.0
. successor @ + 1
- limit 6

Iteration

fo(x) =X,
fe(x) = f(f*(x)),
fa(x) :=supf*(x), forlimitordinalsé.

a<é

(for gfp, take inf instead of sup)

Proof

Monotonicity (1) < fé(1)fora <8
induction on «
(e=0)1L<fé) (Listhe least element)

Proof

Monotonicity (1) < fé(1)fora <8
induction on «
(e=0)1L<fé) (Listhe least element)

(e =a’+1)If8=28"+1, wehave

) <fé) =) <f¥(). (fis monotone)

Proof

Monotonicity (1) < fé(1)fora <8
induction on «
(e=0)1L<fé) (Listhe least element)

(e =a’+1)If8=28"+1, wehave
) <fé) =) <f¥(). (fis monotone)
If 8 is a limit, we have

fe(L) <supf¥(1)=f8(1). (definition of supremum)
y<8

Proof

Monotonicity (1) < fé(1)fora <8
induction on «
(e=0)1L<fé) (Listhe least element)

(e =a’+1)If8=28"+1, wehave
) <fé) =) <f¥(). (fis monotone)
If 8 is a limit, we have

fe(L) <supf¥(1)=f8(1). (definition of supremum)
y<8

(o limit) For y < a, we have f¥(1) < fé(1). Hence,

fe(L) =supf¥(1) < fé(1). (inductive hypothesis)

y<a

Proof

Existence
exists o with f*(1) = f***(1) (there are only |A| different values)

Proof

Existence
exists o with f*(1) = f***(1) (there are only |A| different values)

Least fixed point
a = f(a) fixed point, f%(1) = f**(1)

Proof

Existence
exists o with f*(1) = f***(1) (there are only |A| different values)

Least fixed point
a = f(a) fixed point, f%(1) = f**(1)

1<a

Proof

Existence
exists o with f*(1) = f***(1) (there are only |A| different values)

Least fixed point
a = f(a) fixed point, f%(1) = f**(1)

1<a = f%1)<f%*a)=a (f* monotone, by induction on a)

The modal p-calculus (L)

Adds recursion to modal logic.
Syntax

p==Plorg|lovel|-g|(a)e]|[a]e|pX.o(X)|vX.e(X)
(X positive in uX.@(X) and vX.p (X))

The modal p-calculus (L)
Adds recursion to modal logic.
Syntax
pu=Plorplovel-g[(a)e|[ae|pX.o(X)[vX.o(X)
(X positive in uX.@(X) and vX.p (X))
Semantics
Fo(X)={seS[G,sko(X)}

UX.0(X) : Xo=@, Xieai= Fp(Xi)
vX.o(X) 1 Xo:=S, Xiw:=Feo(Xi)

The modal p-calculus (L)

Adds recursion to modal logic.
Syntax
pu=Plorplovel-g[(a)e|[ae|pX.o(X)[vX.o(X)
(X positive in uX.@(X) and vX.p (X))
Semantics
Fo(X):={seS|G,skEo(X)}
UX.9(X) 1 Xo=@, Xisx:= Fyp(X;)
VX.(P(X) : Xo ::S, Xi+1 = F(P(X’)
Examples

uX(Pv &X) astatein Pis reachable
vX(P AOX) thereis abranch with all states in P

Examples

uX(Pv &X) o astatein Pis reachable

Examples

uX(Pv &X) o astatein Pis reachable

Examples

uX(Pv &X) o astatein Pis reachable

Examples

uX(Pv &X) o astatein Pis reachable

Examples

uX(Pv &X) o astatein Pis reachable

Examples

uX(Pv &X) o astatein Pis reachable

Examples

vX(P A OX) thereis a branch with all states in P

Examples

vX(P A OX) thereis a branch with all states in P

Examples

vX(P A OX) thereis a branch with all states in P

Examples

vX(P A OX) thereis a branch with all states in P

Examples

vX(P A OX) thereis a branch with all states in P

Examples

vX(P A OX) thereis a branch with all states in P

Examples

vX(P A OX) thereis a branch with all states in P

Expressive power

Theorem

For every CTL*-formula ¢ there exists an equivalent formula ¢* of
the modal p-calculus.

Expressive power

Theorem

For every CTL*-formula ¢ there exists an equivalent formula ¢* of
the modal p-calculus.

Proof (for CTL)

P* = P
(pAy)” =@ Ay’
(pvy)" =@ vy’

()" = -¢"
(EXp)" = Op”
(AX@)™ := 0"

(EpUy)™ = uX[9* v (9" A OX)]
(ApUy)* = pX[yp™ v (¢ ADX)]

The modal p-calculus (L)

Theorem
A regular tree language can be defined in the modal p-calculus if,

and only if, it is bisimulation invariant.
Theorem

Satisfiability of pu-calculus formulae is decidable and complete for
exponential time.

Model checking S, s = ¢ for the modal p-calculus can be done in
time O(([o- |S)!*)).

(The satisfiability algorithm uses tree automata and parity games.)

Parity Games
& =(Vo, Vo, E,Q) Q:V—>N
Infinite plays v,, v5, ... are won by Player < if

liminfQ(v,) is even.
n—oo

Bl+—&M—O—&

ONT LI\

T ER—& B B

Parity Games
& =(Vo, Vo, E,Q) Q:V—>N
Infinite plays v,, v5, ... are won by Player < if

liminfQ(v,) is even.
n—oo

Bl—&E—O—&

OND LIN

S E—&B B

Parity Games
®=(Vo, Vo, E,Q) Q:V->N
Infinite plays v,, v5, ... are won by Player < if

liminfQ(v,) is even.
n—oo

Theorem

Parity games are positionally determined: from each position some
player has a positional/memory-less winning strategy.

Parity Games
& =(Vo, Vo, E,Q) Q:V—>N
Infinite plays v,, v5, ... are won by Player < if

liminfQ(v,) is even.
n—oo

Theorem

Parity games are positionally determined: from each position some
player has a positional/memory-less winning strategy.

Theorem

Computing the winning region of a parity game with n positions and
d priorities can be done in time n©(logd),

Model-Checking Games

game for &, s, = @? (¢ p-formula in negation normal form)

Model-Checking Games

game for &, s, = @? (¢ p-formula in negation normal form)

Positions

Player &: (s, ¢) forseSand g asubformula

Y=oV Yy, Yg=Pands¢P, P =puX.Po,
P =(a)yo, Y=-PandseP, ¥ =vX.{o,
g =X.
Playera: [s,¢] forse Sand ¢ asubformula

Y =Po Ay, Yg=PandseP,
¢ =[a]yo, Y=-Pands¢P.

Model-Checking Games

game for &, s, = @? (¢ p-formula in negation normal form)
Positions
Player &: (s, ¢) forseSand g asubformula

Y=oV Yy, Yg=Pands¢P, P =puX.Po,
¥ =(a)yYo, Y=-PandseP, ¥ =vX.{o,
g =X.

Playera: [s,¢] forse Sand ¢ asubformula

Y =Po Ay, Yg=PandseP,
¢ =[a]yo, Y=-Pands¢P.

Initial position (s,, @) or [so, @]

Model-Checking Games

game for G, so = @? (¢ p-formula in negation normal form)

Edges ((s, ¢) means either (s, ¢) or [s, ¥].)
(s) o Vi)~ (s, 9i),

[s) Yo A 1] = (S'lp)
(s, uX.9) —
(s, vX.9) >
(5, X) - <s, BX.9) or (s, VX.9),
(s, (a)p) > (t,p) foreverys—7t,
[s,[a]y] = (t,) foreverys —>9t.

Model-Checking Games

game for G, so = @? (¢ p-formula in negation normal form)

Edges ((s, ¢) means either (s, ¢) or [s, ¥].)

() Yo v) > (s, 9i),
[s) Yo A] — (S'lp)
(s, uX.9) —
(s, vX.9) >
(s, X) —> (s, uX.p)or (s, vX.p),
(s, (a)p) > (t,p) foreverys—7t,
[s, [a]y] = (t,¢) foreverys —>%¢t.

Priorities (all other priorities big)

Q((s, uX.9)) =2k +1, if inside of k fixed points.
Q((s, vX.p)) = 2k.

Model-Checking Games

- Co—0r @ = pX(P v OX)

Model-Checking Games

- Co—0r @ = pX(P v OX)

/m@)()

e
(t, P]
@t uX(PV OX)y—a{t, P v ox)i:

Model-Checking Games

6= CO—®r @=vX(OXARY(PVOY))

Model-Checking Games

6= CO—®r @=vX(OXARY(PVOY))
(s, Y)

© —
(s, @—ks, OXApY(...) F—>s, uY(PVOY)—¥s, PV OY s, OY)

T ! ® l

(s, X) s, OX) (s, P)

(t, X) (t, OX) [t, P]
| ! ® !

(t, @)——t, OX A Y (...) —{t, LY (P Vv OY)—s{t, PV OY st)
©

(t,Y)

Description Logics

Description Logic

General Idea

Extend modal logic with operations that are not
bisimulation-invariant.

Applications

Knowledge representation, deductive databases, system modelling,
semantic web

Ingredients

v

individuals: elements (Anna, John, Paul, Marry,...)

» concepts: unary predicates (person, male, female,...)

v

roles: binary relations (has_child, is_married_to,...)
» TBox: terminology definitions

» ABox: assertions about the world

Example
TBox

man := person A male
woman := person A female
father := man A Jhas_child.person

mother := woman A JFhas_child.person

ABox

man(John)
man(Paul)
woman(Anna)
woman(Marry)
has_child(Anna, Paul)

is_married_to(Anna, John)

Syntax

Concepts
@u=P|T|L[-¢[oArp|oVve[VRp|IRe[(2nR)][(<nR)
Terminology axioms
pEY p=y
TBox Axioms of the form P = ¢.
Assertions
¢(a) R(a,b)

Extensions
» operationsonroles: RnS, RuS, RoS, =R, R*, R*, R™

» extended number restrictions: (>nR)¢, (<nR)¢

Algorithmic Problems

» Satisfiability: Is ¢ satisfiable?

» Subsumption: ¢ = ¢?

» Equivalence: ¢ = ¢?

» Disjointness: ¢ A { unsatisfiable?

All problems can be solved with standard methods like tableaux or
tree automata.

Semantic Web: OWL (functional syntax)

Ontology(
Class(pp:man complete
intersectionOf (pp:person pp:male))
Class(pp:woman complete
intersectionOf (pp:person pp:female))
Class(pp:father complete
intersectionOf (pp:man
restriction(pp:has_child pp:person)))
Class(pp:mother complete
intersectionOf (pp:woman
restriction(pp:has_child pp:person)))
Individual(pp:John type(pp:man))
Individual(pp:Paul type(pp:man))
Individual(pp:Anna type(pp:woman)
value(pp:has_child pp:Paul)
value(pp:is_married_to pp:John))
Individual(pp:Marry type(pp:woman))

