IAoo8: Computational Logic

7. Modal Logic

Achim Blumensath blumens@fi.muni.cz

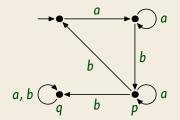
Faculty of Informatics, Masaryk University, Brno

Basic Concepts

Transition Systems

directed graph $\mathfrak{S} = \langle S, (E_a)_{a \in A}, (P_i)_{i \in I}, s_o \rangle$ with

- states S
- ▶ initial state $s_0 \in S$
- edge relations E_a with edge colours $a \in A$ ('actions')
- ▶ unary predicates P_i with vertex colours i ∈ I ('properties')



Modal logic

Propositional logic with modal operators

- $\langle a \rangle \varphi$ 'there exists an a-successor where φ holds'
- $[a]\phi$ ' ϕ holds in every a-successor'

Notation: $\Diamond \varphi$, $\Box \varphi$ if there are no edge labels

Formal semantics

```
\mathfrak{S}, s \vDash P : iff s \in P

\mathfrak{S}, s \vDash \varphi \land \psi : iff \mathfrak{S}, s \vDash \varphi \text{ and } \mathfrak{S}, s \vDash \psi

\mathfrak{S}, s \vDash \varphi \lor \psi : iff \mathfrak{S}, s \vDash \varphi \text{ or } \mathfrak{S}, s \vDash \psi

\mathfrak{S}, s \vDash \neg \varphi : iff \mathfrak{S}, s \nvDash \varphi

\mathfrak{S}, s \vDash \langle a \rangle \varphi : iff there is s \to^a t such that \mathfrak{S}, t \vDash \varphi

\mathfrak{S}, s \vDash [a] \varphi : iff for all s \to^a t, we have \mathfrak{S}, t \vDash \varphi
```

```
P \land \diamondsuit Q 'The state is in P and there exists a transition to Q.' [a]\bot 'The state has no outgoing a-transition.'
```

Interpretations

- Temporal Logic talks about time:
 - states: points in time (discrete/continuous)
 - $\Diamond \varphi$ 'sometime in the future φ holds'
 - ▶ □φ 'always in the future φ holds'
- Epistemic Logic talks about knowledge:
 - states: possible worlds
 - $\Diamond \varphi$ ' φ might be true'
 - □ φ 'φ is certainly true'

```
system \mathfrak{S} = \langle S, <, \bar{P} \rangle
```

"P never holds."

system
$$\mathfrak{S} = \langle S, <, \bar{P} \rangle$$

"P never holds."

$$\neg P \land \neg \diamondsuit P$$

"After every P there is some Q."

system
$$\mathfrak{S} = \langle S, <, \bar{P} \rangle$$

"P never holds."

$$\neg P \land \neg \diamondsuit P$$

"After every P there is some Q."

$$\big(P\to \diamondsuit Q\big) \wedge \Box \big(P\to \diamondsuit Q\big)$$

"Once P holds, it holds forever."

system
$$\mathfrak{S} = \langle S, <, \bar{P} \rangle$$

"P never holds."

$$\neg P \land \neg \diamondsuit P$$

"After every P there is some Q."

$$\big(P\to \diamondsuit Q\big) \wedge \Box \big(P\to \diamondsuit Q\big)$$

"Once P holds, it holds forever."

$$(P \to \Box P) \land \Box (P \to \Box P)$$

• "There are infinitely many P." (for the order $(\mathbb{N}, <)$)

system
$$\mathfrak{S} = \langle S, <, \bar{P} \rangle$$

"P never holds."

$$\neg P \land \neg \diamondsuit P$$

"After every P there is some Q."

$$\big(P\to \diamondsuit Q\big) \wedge \Box \big(P\to \diamondsuit Q\big)$$

"Once P holds, it holds forever."

$$(P \rightarrow \Box P) \wedge \Box (P \rightarrow \Box P)$$

• "There are infinitely many P." (for the order $(\mathbb{N}, <)$)

$$\Box \Diamond P$$

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^*(x)$ of first-order logic such that

$$\mathfrak{S}$$
, $s \models \varphi$ iff $\mathfrak{S} \models \varphi^*(s)$.

Proof

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^*(x)$ of first-order logic such that

$$\mathfrak{S}, \mathfrak{s} \models \varphi \quad \text{iff} \quad \mathfrak{S} \models \varphi^*(\mathfrak{s}).$$

Proof

$$P^* := P(x)$$

$$(\varphi \wedge \psi)^* := \varphi^*(x) \wedge \psi^*(x)$$

$$(\varphi \vee \psi)^* := \varphi^*(x) \vee \psi^*(x)$$

$$(\neg \varphi)^* := \neg \varphi^*(x)$$

$$(\langle a \rangle \varphi)^* := \exists y [E_a(x, y) \wedge \varphi^*(y)]$$

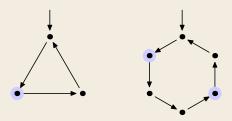
$$([a]\varphi)^* := \forall y [E_a(x, y) \rightarrow \varphi^*(y)]$$

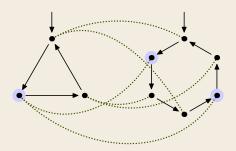
Bisimulation

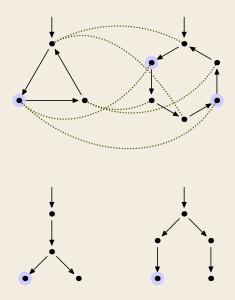
 $\mathfrak S$ and $\mathfrak T$ transition systems

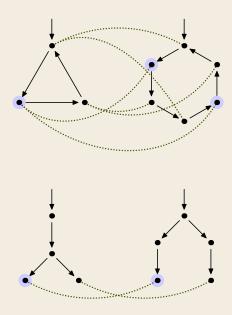
$$Z \subseteq S \times T$$
 is a **bisimulation** if, for all $\langle s, t \rangle \in Z$,
(local) $s \in P \iff t \in P$
(forth) for every $s \to^a s'$, exists $t \to^a t'$ with $\langle s', t' \rangle \in Z$,
(back) for every $t \to^a t'$, exists $s \to^a s'$ with $\langle s', t' \rangle \in Z$.

 \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if there is a bisimulation Z with $(s, t) \in Z$.

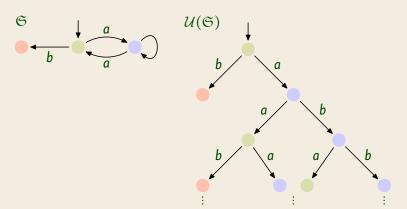








Unravelling



Lemma

 \mathfrak{S} and $\mathcal{U}(\mathfrak{S})$ are bisimilar.

Theorem

Two **finite** transition systems \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if, and only if,

$$\mathfrak{S}$$
, $s \vDash \varphi \quad \Leftrightarrow \quad \mathfrak{T}$, $t \vDash \varphi$, for every modal formula φ .

Proof (for \Rightarrow) induction on φ

Theorem

Two **finite** transition systems \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if, and only if,

$$\mathfrak{S}$$
, $s \vDash \varphi \iff \mathfrak{T}$, $t \vDash \varphi$, for every modal formula φ .

Proof (for
$$\Rightarrow$$
) induction on φ
($\varphi = P$) $s \in P \Leftrightarrow t \in P$

Theorem

Two **finite** transition systems \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if, and only if,

$$\mathfrak{S}$$
, $s \vDash \varphi \quad \Leftrightarrow \quad \mathfrak{T}$, $t \vDash \varphi$, for every modal formula φ .

Proof (for \Rightarrow) induction on φ $(\varphi = P) s \in P \Leftrightarrow t \in P$

(boolean combinations) by inductive hypothesis

Theorem

Two **finite** transition systems \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if, and only if,

$$\mathfrak{S}$$
, $s \vDash \varphi \quad \Leftrightarrow \quad \mathfrak{T}$, $t \vDash \varphi$, for every modal formula φ .

Proof (for \Rightarrow) induction on φ

$$(\varphi = P)$$
 $s \in P \Leftrightarrow t \in P$

(boolean combinations) by inductive hypothesis

$$(\varphi = \langle a \rangle \psi) \mathfrak{S}, s \models \langle a \rangle \psi$$

Theorem

Two **finite** transition systems \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if, and only if,

$$\mathfrak{S}$$
, $s \vDash \varphi \quad \Leftrightarrow \quad \mathfrak{T}$, $t \vDash \varphi$, for every modal formula φ .

Proof (for \Rightarrow) induction on φ $(\varphi = P) \ s \in P \Leftrightarrow t \in P$ (boolean combinations) by inductive hypothesis $(\varphi = \langle a \rangle \psi) \ \mathfrak{S}, \ s \models \langle a \rangle \psi$ $\Rightarrow \text{ex. } s \rightarrow^a s' \text{ with } \mathfrak{S}, \ s' \models \psi$

Theorem

Two **finite** transition systems \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if, and only if,

$$\mathfrak{S}$$
, $s \vDash \varphi \quad \Leftrightarrow \quad \mathfrak{T}$, $t \vDash \varphi$, for every modal formula φ .

Proof (for \Rightarrow) induction on φ

$$(\varphi = P)$$
 $s \in P \Leftrightarrow t \in P$

(boolean combinations) by inductive hypothesis

$$(\varphi = \langle a \rangle \psi) \mathfrak{S}, s \models \langle a \rangle \psi$$

$$\Rightarrow$$
 ex. $s \rightarrow^a s'$ with \mathfrak{S} , $s' \models \psi$

$$\mathfrak{S}$$
, $\mathfrak{s} \sim \mathfrak{T}$, $t \Rightarrow \operatorname{ex.} t \rightarrow^{a} t' \text{ with } \mathfrak{S}$, $\mathfrak{s}' \sim \mathfrak{T}$, t'

Theorem

Two **finite** transition systems \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if, and only if,

$$\mathfrak{S}$$
, $s \models \varphi \iff \mathfrak{T}$, $t \models \varphi$, for every modal formula φ .

Proof (for \Rightarrow) induction on φ $(\varphi = P) \ s \in P \Leftrightarrow t \in P$ (boolean combinations) by inductive hypothesis $(\varphi = \langle a \rangle \psi) \ \mathfrak{S}, \ s \models \langle a \rangle \psi$ $\Rightarrow \text{ex. } s \rightarrow^a s' \text{ with } \mathfrak{S}, \ s' \models \psi$ $\mathfrak{S}, \ s \sim \mathfrak{T}, \ t \Rightarrow \text{ex. } t \rightarrow^a t' \text{ with } \mathfrak{S}, \ s' \sim \mathfrak{T}, \ t'$ $\Rightarrow \mathfrak{T}, \ t' \models \psi$

Theorem

Two **finite** transition systems \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if, and only if,

$$\mathfrak{S}$$
, $s \vDash \varphi \quad \Leftrightarrow \quad \mathfrak{T}$, $t \vDash \varphi$, for every modal formula φ .

Proof (for \Rightarrow) induction on φ $(\varphi = P) \ s \in P \Leftrightarrow t \in P$ (boolean combinations) by inductive hypothesis $(\varphi = \langle a \rangle \psi) \ \mathfrak{S}, \ s \models \langle a \rangle \psi$ $\Rightarrow \text{ ex. } s \rightarrow^a s' \text{ with } \mathfrak{S}, \ s' \models \psi$ $\mathfrak{S}, \ s \sim \mathfrak{T}, \ t \Rightarrow \text{ ex. } t \rightarrow^a t' \text{ with } \mathfrak{S}, \ s' \sim \mathfrak{T}, \ t'$ $\Rightarrow \mathfrak{T}, \ t' \models \psi$ $\Rightarrow \mathfrak{T}, \ t \models \langle a \rangle \psi$

Theorem

Two **finite** transition systems \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if, and only if,

$$\mathfrak{S}$$
, $s \models \varphi \iff \mathfrak{T}$, $t \models \varphi$, for every modal formula φ .

Theorem

Every satisfiable modal formula has a model that is a finite tree.

Theorem

Two **finite** transition systems \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if, and only if,

$$\mathfrak{S}$$
, $s \models \varphi \iff \mathfrak{T}$, $t \models \varphi$, for every modal formula φ .

Theorem

Every satisfiable modal formula has a model that is a finite tree.

Definition

A formula $\varphi(x)$ is **bisimulation invariant** if

$$\mathfrak{S}$$
, $s \sim \mathfrak{T}$, t implies $\mathfrak{S} \vDash \varphi(s) \Leftrightarrow \mathfrak{T} \vDash \varphi(t)$.

Theorem

A first-order formula φ is equivalent to a **modal formula** if, and only if, it is **bisimulation invariant.**

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

Models

transistion systems where each state s is labelled with a Σ -structure \mathfrak{A}_s such that

```
s \rightarrow^a t implies A_s \subseteq A_t
```

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

Models

transistion systems where each state s is labelled with a Σ -structure \mathfrak{A}_s such that

$$s \rightarrow^a t$$
 implies $A_s \subseteq A_t$

- ightharpoonup □ $\forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$ is valid.
- ▶ $\forall x \square \varphi(x) \rightarrow \square \forall x \varphi(x)$ is not valid.

The Entailment Relation

Consequence

 ψ is a **consequence** of Γ ($\Gamma \models \varphi$) if, and only if, for all transition systems \mathfrak{S} ,

$$\mathfrak{S}$$
, $s \models \varphi$, for all $s \in S$ and $\varphi \in \Gamma$,

implies that

$$\mathfrak{S}$$
, $s \models \psi$, for all $s \in S$.

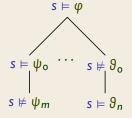
Tableau Proofs

Statements

$$s \vDash \varphi$$
 $s \not\vDash \varphi$ $s \rightarrow^a t$

s, t state labels, φ a modal formula

Rules



Tableaux

Construction

A **tableau** for a formula φ is constructed as follows:

- start with s₀ ⊭ φ
- choose a branch of the tree
- choose a statement $s = \psi/s \neq \psi$ on the branch
- choose a rule with head $s \models \psi/s \not\models \psi$
- add it at the bottom of the branch
- repeat until every branch contains both statements $s \models \psi$ and $s \not\models \psi$ for some formula ψ

Tableaux

Construction

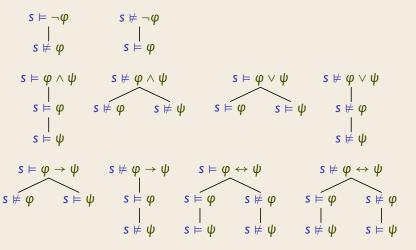
A **tableau** for a formula φ is constructed as follows:

- ▶ start with $s_0 \neq \varphi$
- choose a branch of the tree
- choose a statement $s \models \psi/s \not\models \psi$ on the branch
- choose a rule with head $s \models \psi/s \not\models \psi$
- add it at the bottom of the branch
- repeat until every branch contains both statements $s \models \psi$ and $s \not\models \psi$ for some formula ψ

Tableaux with premises Γ

▶ choose a branch, a state s on the branch, a premise $\psi \in \Gamma$, and add $s \models \psi$ to the branch

Rules



Rules

t a new state, t' every state with entry $s \rightarrow^a t'$ on the branch, c a new constant symbol, u an arbitrary term

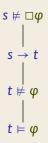
Example $\models \Box(\varphi \rightarrow \psi) \rightarrow (\Box\varphi \rightarrow \Box\psi)$

Example $\models \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$

$$\begin{array}{c}
s \not\models \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi) \\
\downarrow \\
s \models \Box(\varphi \rightarrow \psi) \\
\downarrow \\
s \not\models \Box \varphi \\
\downarrow \\
s \mapsto \Box \varphi \\
\downarrow \\
t \models \varphi \\
t \models \varphi \\
t \models \varphi
\end{array}$$

Example $\varphi \vDash \Box \varphi$

Example $\varphi \vDash \Box \varphi$



Example $\models \Box \forall x \phi \rightarrow \forall x \Box \phi$

Example $\models \Box \forall x \varphi \rightarrow \forall x \Box \varphi$

$$\begin{array}{c|c}
s \not\models \Box \forall x \varphi \rightarrow \forall x \Box \varphi \\
& \downarrow \\
s \models \Box \forall x \varphi \\
& \downarrow \\
s \not\models \forall x \Box \varphi \\
& \downarrow \\
s \rightarrow t \\
& \downarrow \\
t \not\models \varphi[x \mapsto c] \\
& \downarrow \\
t \models \varphi[x \mapsto c]
\end{array}$$

Soundness and Completeness

Theorem

A modal formula φ is a consequence of Γ if, and only if, there exists a tableau T for φ with premises Γ where every branch is contradictory.

Soundness and Completeness

Theorem

A modal formula φ is a consequence of Γ if, and only if, there exists a tableau T for φ with premises Γ where every branch is contradictory.

Theorem

Satisfiability for propositional modal logic is in **deterministic linear space**.

Theorem

Satisfiability for first-order modal logic is undecidable.

Temporal Logics

Speaks about paths. $P \longrightarrow \bullet \longrightarrow P$, $Q \longrightarrow Q \longrightarrow \bullet \longrightarrow \cdots$

Syntax

- atomic predicates P, Q, . . .
- ▶ boolean operations ∧, ∨, ¬
- next Xφ
- until φUψ
- finally $F\varphi := \top U\varphi$
- generally $G\varphi := \neg F \neg \varphi$

Examples

FP a state in P is reachable

GFP we can reach infinitely many states in P $(\neg P)U(P \land Q)$ the first reachable state in P is also in Q

Theorem

Let *L* be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- L can be defined by a star-free regular expression.

Theorem

Let *L* be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- L can be defined by a star-free regular expression.

Translation LTL to FO

```
P^* := P(x)
(\varphi \wedge \psi)^* := \varphi^*(x) \wedge \psi^*(x)
(\varphi \vee \psi)^* := \varphi^*(x) \vee \psi^*(x)
(\neg \varphi)^* := \neg \varphi^*(x)
(X\varphi)^* := \exists y[x < y \wedge \neg \exists z(x < z \wedge z < y) \wedge \varphi^*(y)]
(\varphi U\psi)^* := \exists y[x \le y \wedge \psi^*(y) \wedge \forall z[x \le z \wedge z < y \rightarrow \varphi^*(z)]]
```

Theorem

Satisfiablity of LTL formulae is PSPACE-complete.

Theorem

Model checking \mathfrak{S} , $s \models \varphi$ for LTL is **PSPACE-complete**. It can be done in

```
time \mathcal{O}(|S| \cdot 2^{\mathcal{O}(|\varphi|)}) or space \mathcal{O}((|\varphi| + \log |S|)^2).
```

Theorem

Satisfiablity of LTL formulae is PSPACE-complete.

Theorem

Model checking \mathfrak{S} , $s \models \varphi$ for LTL is **PSPACE-complete**. It can be done in

time
$$\mathcal{O}(|S| \cdot 2^{\mathcal{O}(|\varphi|)})$$
 or space $\mathcal{O}((|\varphi| + \log |S|)^2)$.

Formula complexity: **PSPACE-complete**

Data complexity: NLOGSPACE-complete

Computation Tree Logic (CTL and CTL*)

Applies LTL-formulae to the branches of a tree.

Syntax (of CTL*)

state formulae φ:

$$\varphi ::= P \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \neg \varphi \mid A\psi \mid E\psi$$

▶ path formulae ψ:

$$\psi ::= \varphi \mid \psi \wedge \psi \mid \psi \vee \psi \mid \neg \psi \mid X\psi \mid \psi U\psi \mid F\psi \mid G\psi$$

Examples

EFP a state in *P* is reachable

AFP every branch contains a state in P

EGFP there is a branch with infinitely many P

EGEFP there is a branch such that we can reach P from every

of its states

Computation Tree Logic (CTL and CTL*)

Theorem

Satisfiability for CTL is **EXPTIME-complete**.

Model checking \mathfrak{S} , $s \models \varphi$ for CTL is **P-complete**. It can be done in

$$\mathbf{time} \ \mathcal{O} \big(| \boldsymbol{\varphi} | \cdot | \mathbf{S} | \big) \quad \text{or} \quad \mathbf{space} \ \mathcal{O} \big(| \boldsymbol{\varphi} | \cdot \log^2 \left(| \boldsymbol{\varphi} | \cdot | \mathbf{S} | \right) \big) \,.$$

Data complexity: NLOGSPACE-complete

Computation Tree Logic (CTL and CTL*)

Theorem

Satisfiability for CTL is EXPTIME-complete.

Model checking \mathfrak{S} , $s \models \varphi$ for CTL is **P-complete**. It can be done in

time
$$\mathcal{O}(|\varphi| \cdot |S|)$$
 or space $\mathcal{O}(|\varphi| \cdot \log^2(|\varphi| \cdot |S|))$.

Data complexity: NLOGSPACE-complete

Theorem

Satisfiability for CTL* is 2EXPTIME-complete.

Model checking \mathfrak{S} , $s \models \varphi$ for CTL* is **PSPACE-complete**. It can be done in

time
$$\mathcal{O}(|S|^2 \cdot 2^{\mathcal{O}(|\varphi|)})$$
 or space $\mathcal{O}(|\varphi|(|\varphi| + \log|S|)^2)$.

Formula complexity: PSPACE-complete

Data complexity: NLOGSPACE-complete

Theorem (Knaster, Tarski)

Let (A, \leq) be a **complete** partial order and $f : A \rightarrow A$ **monotone**.

Then f has a least and a greatest fixed point and

$$lfp(f) = \lim_{\alpha \to \infty} f^{\alpha}(\bot) \quad and \quad gfp(f) = \lim_{\alpha \to \infty} f^{\alpha}(\top)$$

Theorem (Knaster, Tarski)

Let (A, \leq) be a **complete** partial order and $f : A \rightarrow A$ **monotone**.

Then f has a **least** and a **greatest fixed point** and

$$\mathsf{lfp}(f) = \lim_{\alpha \to \infty} f^{\alpha}(\bot) \quad \mathsf{and} \quad \mathsf{gfp}(f) = \lim_{\alpha \to \infty} f^{\alpha}(\top)$$

Examples
$$\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle$$

•
$$f(X) := (X \setminus A) \cup B$$

Theorem (Knaster, Tarski)

Let (A, \leq) be a **complete** partial order and $f : A \rightarrow A$ **monotone**.

Then f has a **least** and a **greatest fixed point** and

$$\mathsf{lfp}(f) = \lim_{\alpha \to \infty} f^{\alpha}(\bot) \quad \mathsf{and} \quad \mathsf{gfp}(f) = \lim_{\alpha \to \infty} f^{\alpha}(\top)$$

```
Examples \langle \mathcal{P}(\mathbb{N}), \subseteq \rangle
```

- $f(X) := (X \setminus A) \cup B$
 - lfp(f) = B and $gfp(f) = (\mathbb{N} \setminus A) \cup B$
- $f(X) := \{ y \mid y \le x \in X \}$

Theorem (Knaster, Tarski)

Let (A, \leq) be a **complete** partial order and $f : A \rightarrow A$ **monotone**.

Then f has a least and a greatest fixed point and

$$\mathsf{lfp}(f) = \lim_{\alpha \to \infty} f^{\alpha}(\bot) \quad \mathsf{and} \quad \mathsf{gfp}(f) = \lim_{\alpha \to \infty} f^{\alpha}(\top)$$

```
Examples \langle \mathcal{P}(\mathbb{N}), \subseteq \rangle
```

- $\bullet f(X) \coloneqq (X \setminus A) \cup B$
 - lfp(f) = B and $gfp(f) = (\mathbb{N} \setminus A) \cup B$
- $\bullet f(X) := \{ y \mid y \le x \in X \}$

fixed points: \emptyset , $\{0\}$, $\{0,1\}$, ..., $\{0,\ldots,n\}$, ..., \mathbb{N}

•
$$f(X) := \mathbb{N} \setminus X$$

Theorem (Knaster, Tarski)

Let (A, \leq) be a **complete** partial order and $f : A \rightarrow A$ **monotone**.

Then f has a least and a greatest fixed point and

$$\mathsf{lfp}(f) = \lim_{\alpha \to \infty} f^{\alpha}(\bot) \quad \mathsf{and} \quad \mathsf{gfp}(f) = \lim_{\alpha \to \infty} f^{\alpha}(\top)$$

```
Examples \langle \mathscr{P}(\mathbb{N}), \subseteq \rangle
• f(X) := (X \setminus A) \cup B
```

- $\mathsf{lfp}(f) = B \quad \mathsf{and} \quad \mathsf{gfp}(f) = (\mathbb{N} \setminus A) \cup B$
- $\bullet f(X) := \{ y \mid y \le x \in X \}$

fixed points: \emptyset , $\{0\}$, $\{0,1\}$, ..., $\{0,\ldots,n\}$, ..., \mathbb{N}

• $f(X) := \mathbb{N} \setminus X$ has no fixed points

0, 1, 2, 3, . . .

0, 1, 2, 3, . . . ω

 $0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots$

0, 1, 2, 3, ...
$$\omega$$
, ω + 1, ω + 2, ... ω + ω = ω 2

$$0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots$$

```
0, 1, 2, 3, ... \omega, \omega + 1, \omega + 2, ... \omega + \omega = \omega2, \omega2 + 1, \omega2 + 2, ... \omega3, ... \omega4, ... \omega5, ...
```

0, 1, 2, 3, ...
$$\omega$$
, ω + 1, ω + 2, ... ω + ω = ω 2, ω 2 + 1, ω 2 + 2, ... ω 3, ... ω 4, ... ω 5, ... ω ω = ω ²

```
0, 1, 2, 3, ... \omega, \omega + 1, \omega + 2, ... \omega + \omega = \omega2, \omega2 + 1, \omega2 + 2, ... \omega3, ... \omega4, ... \omega5, ... \omega\omega = \omega<sup>2</sup>, ... \omega<sup>3</sup>, ... \omega<sup>4</sup>, ...
```

```
0, 1, 2, 3, ... \omega, \omega + 1, \omega + 2, ... \omega + \omega = \omega2, \omega2 + 1, \omega2 + 2, ... \omega3, ... \omega4, ... \omega5, ... \omega\omega = \omega<sup>2</sup>, ... \omega<sup>3</sup>, ... \omega<sup>4</sup>, ...
```

```
0, 1, 2, 3, ... \omega, \omega + 1, \omega + 2, ... \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, ... \omega 3, ... \omega 4, ... \omega 5, ... \omega \omega = \omega^2, ... \omega^3, ... \omega^4, ... \omega^{\omega}, ... \omega^{\omega^{\omega}}, ... \omega^{\omega^{\omega}}, ...
```

```
0, 1, 2, 3, ... \omega, \omega + 1, \omega + 2, ... \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, ... \omega 3, ... \omega 4, ... \omega 5, ... \omega \omega = \omega^2, ... \omega^3, ... \omega^4, ... \omega^{\omega}, ... \omega^{\omega^{\omega}}, ... \varepsilon, ...
```

```
0, 1, 2, 3, ... \omega, \omega + 1, \omega + 2, ... \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, ... \omega 3, ... \omega 4, ... \omega 5, ... \omega \omega = \omega^2, ... \omega^3, ... \omega^4, ... \omega^{\omega}, ... \omega^{\omega^{\omega}}, ... \varepsilon, ... \omega_1, ... \omega_2, ...
```

```
0, 1, 2, 3, ... \omega, \omega + 1, \omega + 2, ... \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, ... \omega 3, ... \omega 4, ... \omega 5, ... \omega \omega = \omega^2, ... \omega^3, ... \omega^4, ... \omega^{\omega}, ... \omega^{\omega^{\omega}}, ... \varepsilon, ... \omega_1, ... \omega_2, ...
```

3 Kinds

• 0

```
0, 1, 2, 3, ... \omega, \omega + 1, \omega + 2, ... \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, ... \omega 3, ... \omega 4, ... \omega 5, ... \omega \omega = \omega^2, ... \omega^3, ... \omega^4, ... \omega^{\omega}, ... \omega^{\omega^{\omega}}, ... \varepsilon, ... \omega_1, ... \omega_2, ...
```

3 Kinds

- 0
- successor $\alpha + 1$

```
0, 1, 2, 3, ... \omega, \omega + 1, \omega + 2, ... \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, ... \omega 3, ... \omega 4, ... \omega 5, ... \omega \omega = \omega^2, ... \omega^3, ... \omega^4, ... \omega^{\omega}, ... \omega^{\omega^{\omega}}, ... \varepsilon, ... \omega_1, ... \omega_2, ...
```

3 Kinds

- 0
- successor $\alpha + 1$
- limit δ

```
0, 1, 2, 3, ... \omega, \omega + 1, \omega + 2, ... \omega + \omega = \omega2, \omega2 + 1, \omega2 + 2, ... \omega3, ... \omega4, ... \omega5, ... \omega\omega = \omega2, ... \omega3, ... \omega4, ... \omega4, ... \omega6, ... \omega9, ... \omega1, ... \omega2, ...
```

3 Kinds

- 0
- successor $\alpha + 1$
- limit δ

Proposition

Every non-empty set of ordinals has a least element.

```
0, 1, 2, 3, ... \omega, \omega + 1, \omega + 2, ... \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, ... \omega 3, ... \omega 4, ... \omega 5, ... \omega \omega = \omega^2, ... \omega^3, ... \omega^4, ... \omega^{\omega}, ... \omega^{\omega^{\omega}}, ... \varepsilon, ... \varepsilon, ... \varepsilon, ... \varepsilon, ... \varepsilon, ...
```

3 Kinds

- 0
- successor $\alpha + 1$
- limit δ

Iteration

```
 \begin{array}{ll} \textbf{Monotonicity} & f^{\alpha}(\bot) \leq f^{\beta}(\bot) \text{ for } \alpha \leq \beta \\ \textbf{induction on } \alpha \\ (\alpha = 0) \perp \leq f^{\beta}(\bot) & (\bot \text{ is the least element}) \\ \end{array}
```

```
Monotonicity f^{\alpha}(\bot) \leq f^{\beta}(\bot) for \alpha \leq \beta induction on \alpha (\alpha = 0) \bot \leq f^{\beta}(\bot) (\bot is the least element) (\alpha = \alpha' + 1) If \beta = \beta' + 1, we have f^{\alpha'}(\bot) \leq f^{\beta'}(\bot) \implies f^{\alpha'+1}(\bot) \leq f^{\beta'+1}(\bot). (f is monotone)
```

```
Monotonicity f^{\alpha}(\bot) \leq f^{\beta}(\bot) for \alpha \leq \beta induction on \alpha (\alpha = 0) \bot \leq f^{\beta}(\bot) (\bot is the least element) (\alpha = \alpha' + 1) If \beta = \beta' + 1, we have f^{\alpha'}(\bot) \leq f^{\beta'}(\bot) \implies f^{\alpha'+1}(\bot) \leq f^{\beta'+1}(\bot). (f is monotone)
```

If θ is a limit, we have

$$f^{\alpha}(\bot) \leq \sup_{\gamma < \theta} f^{\gamma}(\bot) = f^{\theta}(\bot)$$
. (definition of supremum)

Monotonicity
$$f^{\alpha}(\bot) \leq f^{\beta}(\bot)$$
 for $\alpha \leq \beta$ induction on α $(\alpha = 0) \bot \leq f^{\beta}(\bot)$ (\bot is the least element) $(\alpha = \alpha' + 1)$ If $\beta = \beta' + 1$, we have $f^{\alpha'}(\bot) \leq f^{\beta'}(\bot) \Rightarrow f^{\alpha'+1}(\bot) \leq f^{\beta'+1}(\bot)$. (f is monotone) If β is a limit, we have $f^{\alpha}(\bot) \leq \sup_{\gamma < \beta} f^{\gamma}(\bot) = f^{\beta}(\bot)$. (definition of supremum) $(\alpha \text{ limit})$ For $\gamma < \alpha$, we have $f^{\gamma}(\bot) \leq f^{\beta}(\bot)$. Hence, $f^{\alpha}(\bot) = \sup_{\gamma < \alpha} f^{\gamma}(\bot) \leq f^{\beta}(\bot)$. (inductive hypothesis)

Existence

exists α with $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$ (there are only |A| different values)

Existence

exists
$$\alpha$$
 with $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$ (there are only $|A|$ different values)

Least fixed point

$$a = f(a)$$
 fixed point, $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$

Existence

exists
$$\alpha$$
 with $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$ (there are only $|A|$ different values)

Least fixed point

$$a = f(a)$$
 fixed point, $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$

$$\perp \leq a$$

Existence

exists
$$\alpha$$
 with $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$ (there are only $|A|$ different values)

Least fixed point

$$a = f(a)$$
 fixed point, $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$

$$\bot \le a \implies f^{\alpha}(\bot) \le f^{\alpha}(a) = a \quad (f^{\alpha} \text{ monotone, by induction on } \alpha)$$

Adds recursion to modal logic.

Syntax

```
\varphi ::= P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu X. \varphi(X) \mid \nu X. \varphi(X) (X positive in \mu X. \varphi(X) and \nu X. \varphi(X))
```

Adds recursion to modal logic.

Syntax

$$\varphi ::= P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu X. \varphi(X) \mid \nu X. \varphi(X)$$

(X positive in $\mu X. \varphi(X)$ and $\nu X. \varphi(X)$)

Semantics

$$F_{\varphi}(X) := \{ s \in S \mid \mathfrak{S}, s \models \varphi(X) \}$$

$$\mu X. \varphi(X) : X_{0} := \emptyset, X_{i+1} := F_{\varphi}(X_{i})$$

$$\nu X. \varphi(X) : X_{0} := S, X_{i+1} := F_{\varphi}(X_{i})$$

Adds recursion to modal logic.

Syntax

$$\varphi ::= P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu X. \varphi(X) \mid \nu X. \varphi(X)$$

(X positive in $\mu X. \varphi(X)$ and $\nu X. \varphi(X)$)

Semantics

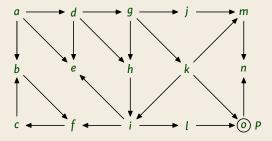
$$F_{\varphi}(X) := \{ s \in S \mid \mathfrak{S}, s \models \varphi(X) \}$$

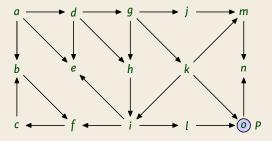
$$\mu X. \varphi(X) : X_{0} := \emptyset, X_{i+1} := F_{\varphi}(X_{i})$$

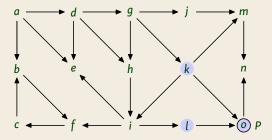
$$\nu X. \varphi(X) : X_{0} := S, X_{i+1} := F_{\varphi}(X_{i})$$

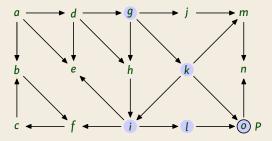
Examples

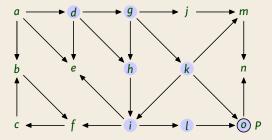
```
\mu X(P \lor \diamondsuit X) a state in P is reachable \nu X(P \land \diamondsuit X) there is a branch with all states in P
```

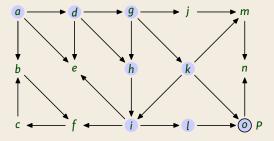


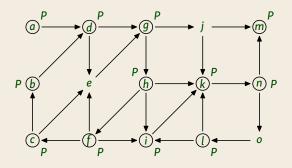


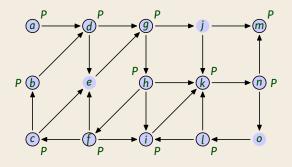


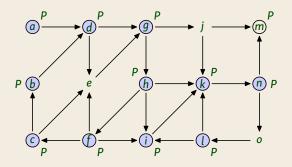


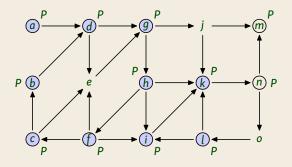


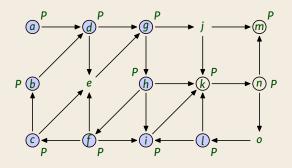


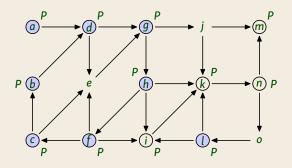


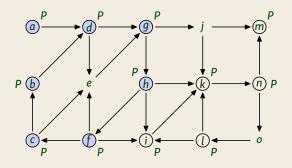












Expressive power

Theorem

For every CTL*-formula φ there exists an equivalent formula φ^* of the modal μ -calculus.

Expressive power

Theorem

For every CTL*-formula φ there exists an equivalent formula φ^* of the modal μ -calculus.

Proof (for CTL)

```
P^* := P
(\varphi \wedge \psi)^* := \varphi^* \wedge \psi^*
(\varphi \vee \psi)^* := \varphi^* \vee \psi^*
(\neg \varphi)^* := \neg \varphi^*
(EX\varphi)^* := \Diamond \varphi^*
(AX\varphi)^* := \Box \varphi^*
(E\varphi U\psi)^* := \mu X [\psi^* \vee (\varphi^* \wedge \Diamond X)]
(A\varphi U\psi)^* := \mu X [\psi^* \vee (\varphi^* \wedge \Box X)]
```

Theorem

A regular tree language can be defined in the **modal** μ -calculus if, and only if, it is **bisimulation invariant**.

Theorem

Satisfiability of μ -calculus formulae is decidable and complete for exponential time.

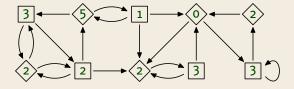
Model checking \mathfrak{S} , $s \models \varphi$ for the modal μ -calculus can be done in time $\mathcal{O}((|\varphi| \cdot |S|)^{|\varphi|})$.

(The satisfiability algorithm uses tree automata and parity games.)

$$\mathfrak{G} = \langle V_{\diamondsuit}, V_{\square}, E, \Omega \rangle \quad \Omega : V \to \mathbb{N}$$

Infinite plays v_0, v_1, \dots are won by Player \diamondsuit if

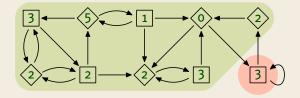
 $\liminf_{n\to\infty}\Omega(\nu_n) \text{ is even.}$



$$\mathfrak{G} = \langle V_{\diamondsuit}, V_{\square}, E, \Omega \rangle \quad \Omega : V \to \mathbb{N}$$

Infinite plays ν_0, ν_1, \dots are won by Player \diamondsuit if

 $\liminf_{n\to\infty}\Omega(\nu_n) \text{ is even.}$



$$\mathfrak{G} = \langle V_{\diamondsuit}, V_{\square}, E, \Omega \rangle \quad \Omega : V \to \mathbb{N}$$

Infinite plays v_0, v_1, \ldots are **won** by Player \diamondsuit if

```
\liminf_{n\to\infty}\Omega(\nu_n) \text{ is even.}
```

Theorem

Parity games are **positionally determined**: from each position some player has a positional/memory-less winning strategy.

$$\mathfrak{G} = \left\langle V_{\diamondsuit}, V_{\square}, E, \Omega \right\rangle \quad \Omega : V \to \mathbb{N}$$

Infinite plays v_0, v_1, \ldots are **won** by Player \diamondsuit if

```
\liminf_{n\to\infty}\Omega(\nu_n) \text{ is even.}
```

Theorem

Parity games are **positionally determined**: from each position some player has a positional/memory-less winning strategy.

Theorem

Computing the winning region of a parity game with n positions and d priorities can be done in time $n^{\mathcal{O}(\log d)}$.

game for \mathfrak{S} , $s_0 \models \varphi$? ($\varphi \mu$ -formula in negation normal form)

game for \mathfrak{S} , $s_0 \models \varphi$? $(\varphi \mu$ -formula in negation normal form)

Positions

Player \diamondsuit : $\langle s, \psi \rangle$ for $s \in S$ and ψ a subformula

$$\psi = \psi_{o} \lor \psi_{1},$$
 $\psi = P \text{ and } s \notin P,$ $\psi = \mu X.\psi_{o},$
 $\psi = \langle a \rangle \psi_{o},$ $\psi = \neg P \text{ and } s \in P,$ $\psi = \nu X.\psi_{o},$
 $\psi = X.$

Player \Box : $[s, \psi]$ for $s \in S$ and ψ a subformula

$$\psi = \psi_o \wedge \psi_1,$$
 $\psi = P \text{ and } s \in P,$
 $\psi = [a]\psi_o,$ $\psi = \neg P \text{ and } s \notin P.$

game for \mathfrak{S} , $s_0 \models \varphi$? $(\varphi \mu$ -formula in negation normal form)

Positions

Player \diamondsuit : $\langle s, \psi \rangle$ for $s \in S$ and ψ a subformula

$$\psi = \psi_{o} \lor \psi_{1}, \qquad \psi = P \text{ and } s \notin P, \qquad \psi = \mu X. \psi_{o},$$
 $\psi = \langle a \rangle \psi_{o}, \qquad \psi = \neg P \text{ and } s \in P, \qquad \psi = \nu X. \psi_{o},$
 $\psi = X.$

Player \Box : $[s, \psi]$ for $s \in S$ and ψ a subformula

$$\psi = \psi_0 \wedge \psi_1,$$
 $\psi = P \text{ and } s \in P,$
 $\psi = \lceil a \rceil \psi_0,$ $\psi = \neg P \text{ and } s \notin P.$

Initial position $\langle s_0, \varphi \rangle$ or $[s_0, \varphi]$

game for \mathfrak{S} , $s_0 \models \varphi$? ($\varphi \mu$ -formula in negation normal form) **Edges** ((s, ψ) means either (s, ψ) or $[s, \psi]$.)

```
 \langle s, \psi_0 \lor \psi_1 \rangle \to (s, \psi_i), 
 [s, \psi_0 \land \psi_1] \to (s, \psi_i), 
 \langle s, \mu X. \psi \rangle \to \psi, 
 \langle s, \nu X. \psi \rangle \to \psi, 
 \langle s, \chi \rangle \to \langle s, \mu X. \psi \rangle \text{ or } \langle s, \nu X. \psi \rangle, 
 \langle s, \langle a \rangle \psi \rangle \to (t, \psi) \text{ for every } s \to^a t, 
 [s, [a]\psi] \to (t, \psi) \text{ for every } s \to^a t.
```

```
game for \mathfrak{S}, \mathfrak{s}_0 \models \varphi? (\varphi \mu-formula in negation normal form)
Edges ((s, \psi) \text{ means either } (s, \psi) \text{ or } [s, \psi].)
          \langle s, \psi_0 \vee \psi_1 \rangle \rightarrow (s, \psi_i)
           [s, \psi_0 \wedge \psi_1] \rightarrow (s, \psi_i),
                \langle s, \mu X. \psi \rangle \rightarrow \psi
                \langle s, vX.\psi \rangle \rightarrow \psi,
                        \langle s, X \rangle \rightarrow \langle s, \mu X. \psi \rangle or \langle s, \nu X. \psi \rangle,
                 \langle s, \langle a \rangle \psi \rangle \rightarrow (t, \psi) for every s \rightarrow^a t,
                 [s, [a]\psi] \rightarrow (t, \psi) for every s \rightarrow^a t.
```

Priorities (all other priorities big)

$$\Omega(\langle s, \mu X. \psi \rangle) := 2k + 1$$
, if inside of k fixed points. $\Omega(\langle s, \nu X. \psi \rangle) := 2k$.

$$\mathfrak{S} = \mathfrak{T} \mathfrak{S} \longrightarrow \mathfrak{T} P \qquad \varphi = \mu X (P \vee \diamondsuit X)$$

$$\mathfrak{S} = (s) \longrightarrow (t) P \qquad \varphi = \mu X (P \lor \diamondsuit X)$$

$$\mathfrak{S} = (s, \varphi X) \longrightarrow (s, \varphi X) \longrightarrow (s, \varphi X)$$

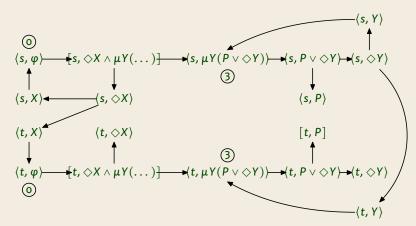
$$\mathfrak{S} = (s, \varphi X) \longrightarrow (s, \varphi X) \longrightarrow (s, \varphi X)$$

$$\mathfrak{S} = (t, \varphi X) \longrightarrow (t, \varphi X) \longrightarrow (t, \varphi X)$$

$$\mathfrak{S} = (t, \varphi X) \longrightarrow (t, \varphi X)$$

$$\mathfrak{S} = (\mathbf{S}) \longrightarrow (\mathbf{t}) P \qquad \varphi = \nu X (\mathbf{S} \times \mathbf{\mu} Y (P \vee \mathbf{S} Y))$$

$$\mathfrak{S} = (\mathbf{S}) \longrightarrow (\mathbf{t}) P \qquad \varphi = \nu X (\mathbf{S} \times \mu Y (P \vee \mathbf{S} Y))$$



Description Logics

Description Logic

General Idea

Extend modal logic with operations that are not bisimulation-invariant.

Applications

Knowledge representation, deductive databases, system modelling, semantic web

Ingredients

- ▶ individuals: elements (Anna, John, Paul, Marry,...)
- concepts: unary predicates (person, male, female,...)
- roles: binary relations (has_child, is_married_to,...)
- TBox: terminology definitions
- ABox: assertions about the world

Example

TBox

```
man := person ∧ male

woman := person ∧ female

father := man ∧ ∃has_child.person

mother := woman ∧ ∃has_child.person
```

ABox

```
man(John)
man(Paul)
woman(Anna)
woman(Marry)
has_child(Anna, Paul)
is_married_to(Anna, John)
```

Syntax

Concepts

$$\varphi ::= P \mid \top \mid \bot \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \forall R\varphi \mid \exists R\varphi \mid (\geq nR) \mid (\leq nR)$$

Terminology axioms

$$\varphi \sqsubseteq \psi$$
 $\varphi \equiv \psi$

TBox Axioms of the form $P \equiv \varphi$.

Assertions

$$\varphi(a)$$
 $R(a,b)$

Extensions

- ▶ operations on roles: $R \cap S$, $R \cup S$, $R \circ S$, $\neg R$, R^+ , R^* , R^-
- extended number restrictions: $(\geq nR)\varphi$, $(\leq nR)\varphi$

Algorithmic Problems

- Satisfiability: Is φ satisfiable?
- **Subsumption**: $\varphi \models \psi$?
- **Equivalence:** $\varphi \equiv \psi$?
- **Disjointness**: $\varphi \wedge \psi$ unsatisfiable?

All problems can be solved with standard methods like **tableaux** or **tree automata**.

Semantic Web: OWL (functional syntax)

```
Ontology(
  Class(pp:man complete
         intersectionOf(pp:person pp:male))
  Class(pp:woman complete
          intersectionOf(pp:person pp:female))
  Class(pp:father complete
          intersectionOf(pp:man
            restriction(pp:has_child pp:person)))
  Class(pp:mother complete
          intersectionOf(pp:woman
            restriction(pp:has_child pp:person)))
  Individual(pp:John type(pp:man))
  Individual(pp:Paul type(pp:man))
  Individual(pp:Anna type(pp:woman)
               value(pp:has_child pp:Paul)
               value(pp:is_married_to pp:John))
  Individual(pp:Marry type(pp:woman))
```