IAoo8: Computational Logic

8. Many-Valued Logics

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Basic Concepts

Many-valued logics: Motivation

To some sentences we cannot – or do not want to – assign a truth value since

- they make presuppositions that are not fulfilled John regrets beating his wife. John does not regret beating his wife.
- they refer to non-existing objects The king of Paris has a pet lion.
- they are too vague The next supermarket is far away.
- we have insufficient information
 The favourite colour of Odysseus was blue.
- we cannot determine their truth The Goldbach conjecture holds.

This leads to logics with truth values other than 'true' and 'false'.

3-valued logic

truth values 'false' \bot , 'uncertain' u, and 'true' \top .

Α	$\neg A$	^	Τ	и	Т	V	Τ	и	Т
Τ	Т	Τ	Τ	Τ	Τ	Τ	Τ	и	Т
и	и	и	Τ	и	и	и	и	и	Т
Т	Τ	Т	Τ	и	Т	Т	Т	Т	Т

Kleene K3				Łukasiewicz L3				
\rightarrow	Τ	и	Т	\rightarrow	Τ	и	Т	
1	Т	Т	Т		Т	Т	Т	
и	и	u	Т	и	и	Т	Т	
Т	Τ	и	Т	Т	Τ	и	Т	

Α	В	$A \wedge (A \rightarrow B)$	$A \wedge (A \rightarrow B) \rightarrow B$
1	Τ	Τ	Т
Τ	и	Τ	Т
Τ	Т	Τ	Т
и	\perp	и	и
и	и	и	u/⊤
и	Т	и	Т
Т	\perp	Τ	Т
Т	и	и	u/⊤
Т	Т	Т	Т

Fuzzy logic

Truth values: $v \in [0, 1]$ measuring **how true** a statement is. o means 'false' and 1 means 'true'.

Several possible semantics:

$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$
1 – A	$A \cdot B$	1 - (1 - A)(1 - B)	1 - A(1 - B)
1 – A	min(A, B)	max(A, B)	max(1-A, B)
1 – A	$\max(A+B-1,0)$	min(A + B, 1)	$\min(1 - A + B, 1)$

$$A \wedge (A \rightarrow B) \rightarrow B = \max(1 - \min(A, \max(1 - A, B)), B)$$

Tableaux for L3

```
statements: t \le \varphi, \varphi \le t, t \nleq \varphi, or \varphi \nleq t, for t \in \{\bot, u, \top\}
```

Construction

A **tableau** for a formula φ is constructed as follows:

- start with 1 ≤ φ
- choose a branch of the tree
- choose a statement σ on the branch
- choose a rule with head σ
- add it at the bottom of the branch
- repeat until every branch contains one of the following contradictions

where $s, t \in \{\bot, u, \top\}$ and φ is a formula

Tableaux Rules

Intuitionistic Logic

The constructivists view

- We are not interested in truth but in provability.
- To prove the existence of an object is to give a concrete example.

```
prove \exists x \varphi(x) \Leftrightarrow \text{find } t \text{ with } \varphi(t)
```

► To prove a **disjunction** is to prove one of the choices.

```
prove \varphi \lor \psi \quad \Leftrightarrow \quad \text{prove } \varphi \text{ or prove } \psi
```

Goal

A variant of first-order logic that captures these ideas.

Boolean algebras

In classical logic the truth values form a boolean algebra with operations

$$\wedge$$
, \vee , \neg , \top , \bot

Properties of negation:

$$X \wedge \neg X = \bot$$
 $X \vee \neg X = \top$

Heyting algebras

In intuitionistic logic the truth values form instead a Heyting algebra with operations

$$\wedge$$
, \vee , \rightarrow , \top , \bot

Properties of implication:

$$z \le x \to y$$
 iff $z \land x \le y$

(that is $x \to y$ is the largest element satisfying $(x \to y) \land x \le y$)

$$x \wedge (x \rightarrow y) = x \wedge y$$
 $x \rightarrow x = \top$
 $y \wedge (x \rightarrow x) = y$ $x \rightarrow (y \wedge z) = (x \rightarrow y) \wedge (x \rightarrow z)$.

Heyting algebras

In intuitionistic logic the truth values form instead a Heyting algebra with operations

$$\wedge$$
, \vee , \rightarrow , \top , \bot

Properties of implication:

$$z \le x \to y$$
 iff $z \land x \le y$

(that is $x \to y$ is the largest element satisfying $(x \to y) \land x \le y$)

$$x \wedge (x \rightarrow y) = x \wedge y$$
 $x \rightarrow x = \top$
 $y \wedge (x \rightarrow x) = y$ $x \rightarrow (y \wedge z) = (x \rightarrow y) \wedge (x \rightarrow z)$.

Negation
$$\neg x := x \to \bot$$
 satisfies $x \land \neg x = \bot$, but not $x \lor \neg x = \top$

Forcing Frames

Definition

Transition system $\mathfrak{S} = \langle S, \leq, (P_i)_{i \in I}, s_o \rangle$ with one edge relation \leq that forms a **partial order**:

- ▶ reflexive $s \le s$
- **transitive** $s \le t \le u$ implies $s \le u$
- ▶ anti-symmetric $s \le t$ and $t \le s$ implies s = t

The forcing relation

 \mathfrak{S} forcing frame, $s \in S$ state, φ formula

```
\begin{array}{lll} s \Vdash P_i & : \text{iff} & t \in P_i & \text{for all } t \geq s \\ s \Vdash \varphi \wedge \psi & : \text{iff} & s \Vdash \varphi \text{ and } s \Vdash \psi \\ s \Vdash \varphi \vee \psi & : \text{iff} & s \Vdash \varphi \text{ or } s \vdash \psi \\ s \Vdash \neg \varphi & : \text{iff} & t \nvDash \varphi & \text{for all } t \geq s \\ s \Vdash \varphi \rightarrow \psi & : \text{iff} & t \vdash \varphi \text{ implies } t \vdash \psi & \text{for all } t \geq s \end{array}
```

The **truth value** of φ in $\mathfrak S$ is

$$\llbracket \phi \rrbracket_{\mathfrak{S}} \coloneqq \{ s \in S \mid s \Vdash \phi \},$$

which is **upwards-closed** with respect to \leq .

Intuition

Intuitionistic logic speaks about the **limit behaviour** of φ for large s.

 $\phi \coloneqq P$

 $\varphi := P$

 $\varphi := \neg P$

 $\varphi := \neg P$

 $\phi \coloneqq P \vee \neg P$

 $\phi \coloneqq P \vee \neg P$

 $\varphi := Q \to P$

 $\phi := Q \to P$

Tableaux for Intuitionistic Logic

Statements

$$s \Vdash \varphi$$
 $s \not\Vdash \varphi$ $s \leq t$

s, t state labels, φ a formula

Rules

$$s \Vdash A \to (B \to A)$$

$$\downarrow s \leq t$$

$$\downarrow t \vdash A$$

$$\downarrow t \vdash B \to A$$

$$\downarrow t \leq u$$

$$\downarrow u \vdash B$$

$$\downarrow u \vdash A$$

$$\downarrow u \vdash A$$

$$s \bowtie \exists x (\varphi \lor \psi) \to (\exists x \varphi \lor \exists x \psi)$$

$$s \le t$$

$$t \bowtie \exists x (\varphi \lor \psi)$$

$$t \bowtie \exists x \varphi \lor \exists x \psi$$

$$t \bowtie \exists x \varphi$$

$$t \bowtie \exists x \varphi$$

$$t \bowtie \exists x \psi$$

$$t \bowtie \exists x \psi$$

$$t \bowtie \forall x \psi$$

$$t \bowtie x \psi$$

$$s \Vdash \forall x (\varphi \land \psi) \rightarrow (\forall x \varphi \land \forall x \psi)$$

$$s \leq t$$

$$t \vdash \forall x (\varphi \land \psi)$$

$$t \vdash \forall x \varphi \land \forall x \psi$$

$$t \vdash \forall x \varphi \land \forall x \psi$$

$$t \leq u \qquad t \leq u'$$

$$u \vdash \varphi(c) \qquad u' \vdash \psi(d)$$

$$u \vdash \varphi(c) \qquad u' \vdash \varphi(d) \land \psi(d)$$

$$u \vdash \varphi(c) \qquad u' \vdash \varphi(d)$$

$$u \vdash \varphi(c) \qquad u' \vdash \varphi(d)$$

$$u \vdash \varphi(d) \land \psi(d)$$

$$u \vdash \varphi(d) \land \psi(d)$$

$$u \vdash \varphi(d) \land \psi(d)$$