IA008: Computational Logic 8. Many-Valued Logics Achim Blumensath blumens@fi.muni.cz Faculty of Informatics, Masaryk University, Brno Basic Concepts Many-valued logics: Motivation To some sentences we cannot – or do not want to – assign a truth value since ▸ they make presuppositions that are not fulfilled John regrets beating his wife. John does not regret beating his wife. ▸ they refer to non-existing objects 吀he king of Paris has a pet lion. ▸ they are too vague 吀he next supermarket is far away. ▸ we have insufficient information 吀he favourite colour of Odysseus was blue. ▸ we cannot determine their truth 吀he Goldbach conjecture holds. 吀his leads to logics with truth values other than ‘true’ and ‘false’. 3-valued logic truth values ‘false’ , ‘uncertain’ u, and ‘true’ ⊺. A ¬A ⊺ u u ⊺ ∧ u ⊺ u u u ⊺ u ⊺ ∨ u ⊺ u ⊺ u u u ⊺ ⊺ ⊺ ⊺ ⊺ Kleene K3 → u ⊺ ⊺ ⊺ ⊺ u u uuu ⊺ ⊺ u ⊺ Łukasiewicz L3 → u ⊺ ⊺ ⊺ ⊺ u u ⊺⊺⊺ ⊺ ⊺ u ⊺ Example A B A ∧ (A → B) A ∧ (A → B) → B ⊺ u ⊺ ⊺ ⊺ u u u u u u u/⊺ u ⊺ u ⊺ ⊺ ⊺ ⊺ u u u/⊺ ⊺ ⊺ ⊺ ⊺ Fuzzy logic Truth values: v ∈ [0,1] measuring how true a statement is. 0 means ‘false’ and 1 means ‘true’. Several possible semantics: ¬A A ∧ B A ∨ B A → B 1 − A A ⋅ B 1 − (1 − A)(1 − B) 1 − A(1 − B) 1 − A min(A,B) max(A,B) max(1 − A,B) 1 − A max(A + B − 1,0) min(A + B,1) min(1 − A + B,1) Example A ∧ (A → B) → B = max(1 − min(A,max(1 − A,B)),B) 0 1 0 1 Tableaux for L3 statements: t ≤ φ, φ ≤ t, t ≰ φ, or φ ≰ t, for t ∈ { ,u,⊺} Construction A tableau for a formula φ is constructed as follows: ▸ start with 1 ≰ φ ▸ choose a branch of the tree ▸ choose a statement σ on the branch ▸ choose a rule with head σ ▸ add it at the bottom of the branch ▸ repeat until every branch contains one of the following contradictions ≰ φ s ≤ t with s ≰ t s ≤ φ and t ≰ φ with t ≤ s φ ≰ ⊺ s ≰ t with s ≤ t φ ≤ s and φ ≰ t with s ≤ t where s,t ∈ { ,u,⊺} and φ is a formula Tableaux Rules t ≰ φ φ ≤ s t ≤ φ φ ≰ s φ ≰ t s ≤ φ φ ≤ t s ≰ φ s maximal < t t ≤ ¬φ φ ≤ ¬t t ≰ ¬φ φ ≰ ¬t t ≤ φ ∧ ψ t ≤ φ t ≤ ψ t ≰ φ ∧ ψ t ≰ φ t ≰ ψ φ ∨ ψ ≤ t φ ≤ t ψ ≤ t φ ∨ ψ ≰ t φ ≰ t ψ ≰ t t ≠ ⊺ ≰ φ → ψ u ≤ φ ⊺ ≤ φ u ≰ ψ ⊺ ≰ ψ u ≰ φ → ψ u ≤ φ u ≰ ψ u ≤ φ → ψ u ≰ φ u ≤ ψ ⊺ ≤ φ → ψ ⊺ ≰ φ ⊺ ≤ ψ ⊺ ≤ φ → ψ u ≰ φ u ≤ ψ Example u ≰ [(u → A) ∧ (⊺ → (A → B))] → B u ≤ (u → A) ∧ (⊺ → (A → B)) u ≰ B u ≤ u → A u ≤ ⊺ → (A → B) u ≰ u u ≤ A u ≰ ⊺ u ≤ A → B u ≰ A u ≤ B Intuitionistic Logic 吀he constructivists view ▸ We are not interested in truth but in provability. ▸ To prove the existence of an object is to give a concrete example. prove ∃xφ(x) ⇔ find t with φ(t) ▸ To prove a disjunction is to prove one of the choices. prove φ ∨ ψ ⇔ prove φ or prove ψ Goal A variant of first-order logic that captures these ideas. Boolean algebras In classical logic the truth values form a boolean algebra with operations ∧, ∨, ¬, ⊺, Properties of negation: x ∧ ¬x = x ∨ ¬x = ⊺ Heyting algebras In intuitionistic logic the truth values form instead a Heyting algebra with operations ∧, ∨, →, ⊺, Properties of implication: z ≤ x → y iff z ∧ x ≤ y (that is x → y is the largest element satisfying (x → y) ∧ x ≤ y) x ∧ (x → y) = x ∧ y x → x = ⊺ y ∧ (x → x) = y x → (y ∧ z) = (x → y) ∧ (x → z) . Heyting algebras In intuitionistic logic the truth values form instead a Heyting algebra with operations ∧, ∨, →, ⊺, Properties of implication: z ≤ x → y iff z ∧ x ≤ y (that is x → y is the largest element satisfying (x → y) ∧ x ≤ y) x ∧ (x → y) = x ∧ y x → x = ⊺ y ∧ (x → x) = y x → (y ∧ z) = (x → y) ∧ (x → z) . Negation ¬x = x → satisfies x ∧ ¬x = , but not x ∨ ¬x = ⊺ Forcing Frames Definition Transition system S = ⟨S,≤,(Pi)i∈I,s0⟩ with one edge relation ≤ that forms a partial order: ▸ reflexive s ≤ s ▸ transitive s ≤ t ≤ u implies s ≤ u ▸ anti-symmetric s ≤ t and t ≤ s implies s = t 吀he forcing relation S forcing frame, s ∈ S state, φ formula s ⊩ Pi :iff t ∈ Pi for all t ≥ s s ⊩ φ ∧ ψ :iff s ⊩ φ and s ⊩ ψ s ⊩ φ ∨ ψ :iff s ⊩ φ or s ⊩ ψ s ⊩ ¬φ :iff t ⊮ φ for all t ≥ s s ⊩ φ → ψ :iff t ⊩ φ implies t ⊩ ψ for all t ≥ s 吀he truth value of φ in S is ⟦φ⟧S = { s ∈ S s ⊩ φ} , which is upwards-closed with respect to ≤. Intuition Intuitionistic logic speaks about the limit behaviour of φ for large s. Example P P P P P P P P Q Q Q Q Q Q Q Example φ = P P P P P P P P P Q Q Q Q Q Q Q Example φ = P P P P P P P P P Q Q Q Q Q Q Q Example φ = ¬P P P P P P P P P Q Q Q Q Q Q Q Example φ = ¬P P P P P P P P P Q Q Q Q Q Q Q Example φ = P ∨ ¬P P P P P P P P P Q Q Q Q Q Q Q Example φ = P ∨ ¬P P P P P P P P P Q Q Q Q Q Q Q Example φ = Q → P P P P P P P P P Q Q Q Q Q Q Q Example φ = Q → P P P P P P P P P Q Q Q Q Q Q Q Tableaux for Intuitionistic Logic Statements s ⊩ φ s ⊮ φ s ≤ t s,t state labels, φ a formula Rules s ⊩ φ s ⊩ ψ0 . . . s ⊮ θ0 s ⊮ ψm s ⊩ θn s ⊩ φ t ⊩ φ φ atomic, t ≥ s arbitrary s ⊮ φ φ atomic s ⊩ ¬φ t ⊮ φ t ≥ s arbitrary s ⊮ ¬φ s ≤ t t ⊩ φ t news ⊩ φ ∧ ψ s ⊩ φ s ⊩ ψ s ⊮ φ ∧ ψ s ⊮ φ s ⊮ ψ s ⊩ φ ∨ ψ s ⊩ φ s ⊩ ψ s ⊮ φ ∨ ψ s ⊮ φ s ⊮ ψ s ⊩ φ → ψ t ⊮ φ t ⊩ ψ t ≥ s arbitrary s ⊮ φ → ψ s ≤ t t ⊩ φ t ⊮ ψ t new s ⊩ ∃xφ s ⊩ φ(c) c new s ⊮ ∃xφ s ⊮ φ(c) c arbitrary s ⊩ ∀xφ t ⊩ φ(c) c, t arbitrary with s ≤ t s ⊮ ∀xφ s ≤ t t ⊮ φ(c) c, t new(‘c arbitrary’ means either new or appearing somewhere on the same branch.) s ⊮ A → (B → A) s ≤ t t ⊩ A t ⊮ B → A t ≤ u u ⊩ B u ⊮ A u ⊩ A s ⊮ ∃x(φ ∨ ψ) → (∃xφ ∨ ∃xψ) s ≤ t t ⊩ ∃x(φ ∨ ψ) t ⊮ ∃xφ ∨ ∃xψ t ⊩ φ(c) ∨ ψ(c)u t ⊮ ∃xφ t ⊮ ∃xψ t ⊮ φ(c) t ⊮ ψ(c) t ⊩ φ(c) t ⊩ ψ(c) s ⊮ ∀x(φ ∧ ψ) → (∀xφ ∧ ∀xψ) s ≤ t t ⊩ ∀x(φ ∧ ψ) t ⊮ ∀xφ ∧ ∀xψ t ⊮ ∀xφ t ≤ u u ⊮ φ(c) u ⊩ φ(c) ∧ ψ(c) u ⊩ φ(c) u ⊩ ψ(c) t ⊮ ∀xψ t ≤ u′ u′ ⊮ ψ(d) u′ ⊩ φ(d) ∧ ψ(d) u′ ⊩ φ(d) u′ ⊩ ψ(d)