1st homework assignment

Task 1 - cleaning data (2 points)

Work with the **customer_behaviour** dataset.

load("customer_behaviour.RData")

The dataset has 4 columns, each row represents an individual customer: *money_spent* describes the average amount of money customer spends during one visit, *age* is self-explanatory, *web_visits* describes how many times a month customer checks out the shop website, *mail_ads* describes how many advertisement emails the customer gets monthly, *shop_visits* described how many times the customer visits a shop in person a month. Explore each variable and **delete** any rows which have mistakes in them. **Do not fix the mistakes, delete whole rows.**

number of rows in the cleaned dataset

Task 2 - descriptive statistics (3 points)

Work with the cleaned dataset from the previous month **customer_behaviour2**.

load("customer_behaviour2.RData")

Firstly, create a new variable called **big** where each value equals either 1 (if the person spent more money than 5000 USD), or 0 (if he spent less or equal):

insert your code here

Plot two boxplots of the variable *money_spent* into one figure: the first one for observations with the value of *big* equal to 0, the second one for observations with the value of *big* equal to 1. Then create a histogram for the variable *money_spent* together with its kernel density estimation.

Finally, compute following numerical characteristics of the variable *age*:

mean	median	1^{st} quartile	3^{rd} quartile	interquartile range	variance
insert	insert	insert	insert	insert	insert

Choose one appropriate measure of location and one appropriate measure of variability for the *money_spent* variable. Input the name of the measure into the following table. Briefly explain why you chose these measures.

measure of location	measure of variability
insert name	insert name
insert explanation	insert explanation

Task 3 - correlation (2 points)

Compute the correlation matrix of the data from the previous task (excluding the *money_spent* and *big* variables) and the sum of all its diagonal elements. Explain the result of the sum:

Sum of diagonal elements	Explanation
number	text

Compute and **interpret** correlation coeficients between following variables:

Variables	Results	Interpretation
example	0	The correlation is zero, which means
money_spent, age	insert	insert
money_spent, web_visits	insert	insert

Interpretation in the form "correlation coefficient is 0.8 which means the correlation is high" will not be accepted.

Task 4 - PCA (3 points)

Use PCA on the dataset from the previous task (**customer_behaviour2**, excluding variables *money_spent* and *big*). Use as little components as possible to capture at least 80 % of data variance.

Number	of components	used
insert		

State which variable has the most influence on each component.

	Component 1	Component 2	Component 3	Component 4
most impactful variable	insert	insert	insert	insert

Create a scatter plot of data points using the first two components. Plot the points in different colours depending on the value of the *big* variable. What is your evaluation of the final plot? Can you decipher from the plot which variable(s) seems best at separating *big* shoppers from the customers who spend less?

Scatter plot evaluation	Which variable(s) best separates heavy spenders		
insert text explaining what can you see in	insert name of the variable(s) and explain		
the scatter plot	why you came to such conclusion		