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The Notion of Entropy

Entropy – “chaos” , fuzziness, opposite of order,...
you know it

it is much easier to create“mess” than to tidy things up. . .

Comes from physics:
Entropy does not go down unless energy is used

Measure of uncertainty:
if low ...low uncertainty

Entropy
The higher the entropy, the higher uncertainty, but the higher
“surprise” (information) we can get out of experiment.
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The Formula

Let px(x) be a distribution of random variable X
Basic outcomes (alphabet) Ω

Entropy
H(X) = −∑x∈Ω p(x) log2 p(x)

Unit: bits (log10: nats)
Notation: H(X) = Hp(X) = H(p) = HX(p) = H(pX)
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Using the Formula: Example

Toss a fair coin: Ω = {head, tail}
p(head) = .5, p(tail) = .5
H(p) = −0.5 log2(0.5) + (−0.5 log2(0.5)) =
2× ((−0.5)× (−1)) = 2× 0.5 = 1

Take fair, 32-sided die: p(x) =
1

32
for every side x

H(p) = −∑i=1...32 p(xi) log2 p(xi) = −32(p(x1) log2 p(x1))

(since for all i p(xi) = p(x1) = 1
32

= −32× ( 1
32 × (−5)) = 5 (now you see why it’s called bits?)

Unfair coin:
p(head) = .2 ...H(p) = .722
p(head) = .1 ...H(p) = .081
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Example: Book Availability
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The Limits

When H(p) = 0?
if a result of an experiment is known ahead of time:
necessarily:

∃x ∈ Ω; p(x) = 1&∀y ∈ Ω; y 6= x ⇒ p(y) = 0

Upper bound?
none in general
for |Ω |= n : H(p) ≤ log2 n

nothing can be more uncertain than the uniform
distribution
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Entropy and Expectation

Recall:
E(X) =

∑
x∈X(Ω) px(x)× x

Then:

E
(

log2

(
1
p(x)

))
=
∑
x∈X(Ω) px(x) log2

(
1

px(x)

)
=

−∑x∈X(Ω) pX(x) log2 px(x) = H(px) =notation H(p)
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Perplexity: motivation

Recall:
2 equiprobable outcomes: H(p) = 1 bit
32 equiprobable outcomes: H(p) = 5 bits
4.3 billion equiprobable outcomes: H(p) ∼= 32 bits

What if the outcomes are not equiprobable?
32 outcomes, 2 equiprobable at 0.5, rest impossible:

H(p) = 1 bit
any measure for comparing the entropy (i.e. uncertainty/difficulty
of prediction) (also) for random variables with
different number of outcomes?
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Perplexity

Perplexity:
G(p) = 2H(p)

...so we are back at 32 (for 32 eqp. outcomes), 2 for fair coins, etc.
it is easier to imagine:

NLP example: vocabulary size of a vocabulary with uniform
distribution, which is equally hard to predict

the “wilder” (biased) distribution, the better:
lower entropy, lower perplexity
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Joint Entropy and Conditional Entropy

Two random variables: X (space Ω), Y (Ψ)
Joint entropy:

no big deal: ((X,Y) considered a single event):

H(X, Y) = −
∑

x∈Ω

∑

y∈Ψ

p(x, y) log2 p(x, y)

Conditional entropy:

H(Y |X) = −
∑

x∈Ω

∑

y∈Ψ

p(x, y) log2 p(y|x)

recall that H(X) = E
(

log2
1

px(x)

)

(weighted “average”, and weights are not conditional)
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Conditional Entropy (Using the Calculus)

other definition:

H(Y |X) =
∑
x∈Ω p(x)H(Y |X = x) =

for H(Y |X = x), we can use
the single-variable definition (x ∼ constant)
=
∑
x∈Ω p(x)

(
−∑y∈Ψ p(y|x) log2 p(y|x)

)
=

= −∑x∈Ω

∑
y∈Ψ p(y|x)p(x) log2 p(y|x) =

= −∑x∈Ω

∑
y∈Ψ p(x, y) log2 p(y|x)
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Properties of Entropy I

Entropy is non-negative:
H(X) ≥ 0
proof: (recall: H(X) = −∑x∈Ω p(x) log2 p(x))

log2(p(x)) is negative or zero for x ≤ 1,
p(x) is non-negative; their product p(x) log(p(x)) is thus
negative,
sum of negative numbers is negative,
and -f is positive for negative f

Chain rule:
H(X, Y) = H(Y |X) + H(X), as well as
H(X, Y) = H(X|Y) + H(Y) (since H(Y ,X) = H(X, Y))
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Properties of Entropy II

Conditional Entropy is better (than unconditional):
H(Y |X) ≤ H(Y)

H(X, Y) ≤ H(X) + H(Y) (follows from the previous (in)equalities)

equality iff X,Y independent
(recall: X,Y independent iff p(X,Y)=p(X)p(Y))

H(p) is concave (remember the book availability
graph?)

concave function f over an interval (a,b):
∀x, y ∈ (a, b),∀λ ∈ [0, 1] :
f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y)

function f is convex if -f is concave

for proofs and generalizations, see Cover/Thomas
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