Dialogue systems Luděk Bártek

Physical Acoustics

Physiologica Acoustics

Dialogue systems

Luděk Bártek

Laboratory of Searching and Dialogue, Faculty of Informatics Masaryk University, Brno

jaro 2023

Sound

Dialogue systems

Physical Acoustics

Physiological Acoustics

Sound

- oscillation of an environment molecules (air)
- caused by transmission medium resistance.
- Oscillation of a mass point
 - move of a point from equilibrium position into a place with maximum deflection (an amplitude) and from there to the opposite point with maximum deflection. etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Oscillations

Oscillations Physical Quantities

Dialogue systems

Luděk Bártek

Physical Acoustics

Physiologica Acoustics

- Amplitude maximum deviation of the osculation.
- Period (T)
 - the time of a repetition of a periodic event.
 - Unit 1 s (second).
- Frequency (f)
 - the number of periodic event repetition per time unit (usually per second).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- applies $f = \frac{1}{T}$
- the unit is 1 Hz (Hertz).

Oscillations Physical Quantities

Dialogue systems

Luděk Bártek

Physical Acoustics

Physiologica Acoustics

- The force acting on the oscillating point:
 - F = -ks, k spring stiffness, s current spring deflection
 - $F = ma \Rightarrow ma = -ks$, m body mass, a acceleration
 - $a + \omega^2 s = 0$ ($\omega^2 = \frac{k}{m}$, ω angular velocity of oscillatory motion: $\omega = \frac{2\pi}{T}$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• phase of oscillatory motion: $\psi = \omega t$

- current deflection: $y = y_m sin\omega t = y_m sin\psi$
- current speed: $v = \omega y_m sin\omega t = y_m sin\psi$
- current acceleration: $a = -\omega y_m \sin \omega t = y_m \sin \psi$

Harmonic vs. Damped vs. Forced Oscillations

Luděk Bártek

Physical Acoustics

Physiological Acoustics

Harmonic oscillations

- no external force acts on the body
- we hardly ever meet him in practice (air resistance, ...).
- Damped oscillation
 - the resistance of the environment acts against the movement
 - the amplitude decreases with time (the distance from the source).

Forced oscillation, resonance

• there is an additional periodic force acting on a solid point $G = sin\alpha t$

$$F = ma = -ky + \sin\alpha t \Rightarrow a + \omega^2 y = \sin\alpha t$$

particular solution: $\frac{\sin \alpha t}{\omega^2 - \alpha^2}$

Sound

Dialogue systems

Luděk Bártek

Physical Acoustics

Physiological Acoustics

- Sound mechanic osculation of a flexible environment (air, water, metal, ...)
- Acoustics a science studding sound (from a Greek akustikos – related to hearing):
 - physical sound as a physical oscillations
 - physiological acoustics a creation and a perception of sound by human
 - musical sound from the musical point of view
 - molecular relation of acoustic properties and molecular structure.
- Classification of sounds:
 - infra sound frequency < 16 Hz
 - audible sound 16 Hz 16kHz
 - ultrasound > 16 kHz
 - hyper sound up to 10⁸ Hz utilized by molecular acoustics for example.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Simple vs. Composed Tone

Dialogue systems Luděk Bártek

Physical Acoustics

Physiologica Acoustics Basic (simple) tone – intensity course can be estimated using a simple sinusoidal function.

Composed tone – linear combination of basic tones.

Acoustic Spectrum of a Sound

Dialogue systems

Physical Acoustics

Physiological Acoustics

- Acoustic spectrum set of a basic tones forming a particular sound.
- Obtaining spectrum Fourier transformation:
 - F(x) must fulfil the Dirichlet's conditions
 - a periodic function with period T
 - partially continuous in the given interval (only finite count of a points of discontinuity of a 1st kind)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- finite count of extremes on the interval
- defined in endpoints of the interval:

Acoustic Spectrum

Calculation

Dialogue systems Luděk Bártek

Physical Acoustics

Physiologica Acoustics Exploits decomposition using the Fourier series:

$$F(x) = \frac{a_0}{2} + \sum_{i=1}^{\infty} a_i \cos(i\omega x) + b_i \sin(i\omega x)$$

• $\omega = \frac{2\pi}{T}$ • best F(x) approximation using coefficients *a* a *b*:

$$a_{k} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} F(x) \cos(kx) dx$$
$$b_{k} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} F(x) \sin(kx) dx$$

Spectral coefficients values

$$s_k = \sqrt{a_k^2 + b_k^2}$$

Sound Acoustic Spectrum

cont.

Dialogue systems

Physical Acoustics

Physiological Acoustics

- Problem sound is periodic on a small intervals.
 - analysis on a short interval where is assumed that the sound is periodic.
- Physiological acoustics point of view spectrum corresponds to resonation of the fibres of the Coorti organ or to the reaction of the corresponding neurons.

Sound Pressure

Dialogue systems

Luděk Bártek

Physical Acoustics

Physiological Acoustics

Sound pressure

- Corresponds to the force acting on an area element in the acoustic oscillation environment.
- For a sine wave:

$$p = p_0 sin(\omega t)$$

- p₀ maximum sound pressure during a period
- ω angular speed
- t time.

Acoustic Intensity and Acoustic Pressure

Dialogue systems

Physical____

Acoustics

Physiological Acoustics

Acoustic intensity

- It expresses the amount of acoustic energy passing through a unit area per unit of a time.
- Proportional to the square of acoustic pressure.
- Sound intensity range from minimal (*l*₀) to maximum (*l*₁) acoustic intensity where we can hear a tone with frequency 1 kHz.

- Sensitivity threshold $-p_0 = 2 \cdot 10^{-2} Nm^{-2}$.
- Threshold of pain $-p_1 = 10^2 Nm^{-2}$.
- Range $-2, 5 \cdot 10^{13} Nm^{-2}$.

Sound Perception

Dialogue systems

Physical Acoustics

Physiologica Acoustics

- Web-Fechner's psychophysical law:
 - The loudness subjectively perceived by a human increases with geometric increase of intensity approximately linearly.
 - We calculate the level of a sound intensity using the formula:

$$L = 10 \cdot \log \frac{l}{l_0}$$

- unit 1 bel (original bell) [B]
- The derived unit decibel [dB] is commonly used. $(10^{-1}B)$.

The Acoustic Intensity Approximate Values

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Physical Acoustics

Physiological Acoustics

- whisper 10 20 dB
- muffled talk 35 45 dB
- symphonic orchestra 70 90 dB
- rock music 110 130 dB.

Fundamentals of a Physiological Acoustics

Physical Acoustics

Physiological Acoustics

Physiological acoustics areas:

- speech production
- speech perception.
- Uses Helmholtz's resonance theory.

Helmholtz resonator

Dialogue systems Luděk Bárte

Physical Acoustics

Physiological Acoustics

- Operation principle:
 - By introducing air into the resonator, overpressure is created in it.
 - It pushes out excess air and creates negative pressure that causes intake of surrounding air.
 - This forms periodic plot:

$$f = \frac{75,3}{D} \sqrt{\frac{d}{D}} [Hz]$$

Speech Production Mechanism

Dialogue systems

Physical Acoustics

Physiological Acoustics

- Speech is created by *vocal system* (placed in *larynx*).
- Vocal cords forms narrow slit and are agitated by passing air.
- Frequency of their vibrations forms the basic vocal tone F_0
- The sound formed in larynx using the vocal cords (vowels, voiced consonants) is modified in *resonance cavities*:
 - laryngeal
 - oral
 - nasopharyngeal.
- The resonance cavities principle is similar to the Helmholtz resonator.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Vocal Cords and the Human Voice Organ Diagram

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

Speech Perception Mechanism

Dialogue systems

Physical Acoustics

Physiological Acoustics

- Sound is perceived with the auditory organ.
- Auditory organ:
 - outer ear captures, concentrates and brings sound waves to the middle ear
 - middle ear
 - transmits the sound energy using a mechanical way between outer and inner ear
 - contains mechanism to making up the difference between outer environment and auditory organ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

inner ear – converts the sound energy into the excitations that are transmitted into a brain.

Auditory Organ Diagram

Dialogue systems Luděk Bártek

Physical Acoustics

Physiological Acoustics

Obrázek: Auditory organ diagram

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outer Ear

Dialogue systems

Physical Acoustics

Physiological Acoustics

Consist of:

- Auricle concentrates sound waves into the ear canal.
- Ear canal conducts the sound energy (waves) to the tympanic membrane.
- Tympanic membrane:
 - thin membrane at the end of ear canal thickness approx 0.1 mm.
 - It amplifies and transfers sound energy to the ossicles of middle ear.

Middle Ear

Dialogue systems

Physical Acoustics

Physiological Acoustics

Contains:

- Ossicless of the middle ear:
 - malleus adjoins the timpanic membrane
 - incus
 - stapes adjoins the oval window of the inner ear, through which is energy transmitted to the inner ear.
- Oval window membrane through which is the movement of middle ear ossicles transferred to the inner ear.
- Eustachian tube:
 - Tube between middle ear and nasopharynx.
 - Serves to balance the pressure between outer environment and the middle ear, to protect the the auditory organ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Inner Ear

Dialogue systems

Physical Acoustics

Physiological Acoustics

Cochlea:

- Is filled with aqueous solution.
- An organ in the shape of a snail shell containing Coorti organ.
- Coorti organ contains approx. 20000 fibres with length between 40 μm 0,5 mm.
- Fibres are connected to the nerve endings that conduct impulses to the hearing centre of the brain.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Balance organ.