Dialogue Systems

Luděk Bártek

to digital speech processing

Dialogue Systems

Luděk Bártek

Laboratory of Searching and Dialogue, Fakulty of Informatics, Masaryk University, Brno

spring 2023

Sound Digitization

Dialogue Systems

Luděk Bárte

- Objectives transformation of continuous acoustic signal into a series of a discrete values, which can be processed by computer.
 - These values can be processed by computer.
- Sound digitization steps:
 - sampling scanning the current value of the signal characteristics at given frequency (sampling frequency).
 - quantization transformation of values from sampling (real numbers) values into the computer real/integral number representation.
 - 3 waveform coding— the way of storing information about the input signal.

Sampling

Dialogue Systems

Ludek Barte

- Scanning the present signal value scanning is repeating at predefined rate (sampling rate).
- Sampling rate should be double of the maximum frequency present in the signal to be able to reconstruct the original signal without loosing included information (Shannon sampling theorem)
- acquired values must be quantized and stored in suitable way.
- Commonly used sampling rates:
 - 8 kHz phone quality
 - 16 kHz
 - 22050 Hz FM quality
 - 44100 Hz CD quality
 - 48 kHz DVD quality

Quantization

Dialogue Systems

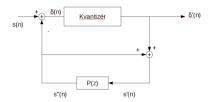
Luděk Bártek

- Method how to transform continuous values into the discrete ones.
- Principle:
 - When the present sample cross the n-th multiple of quantization step the value n is send to the output.
 - Quantization step:
 - the average difference of input to change output by one.
 - quantization step = input values range/number of output values
 - quantization error rounding error caused by value of quantization step, proportional to the quantization step.
- Commonly used integer quantizations:
 - Sound processing: 8 bits $(2^8 = 256 \text{ levels})$, 16 bits $(2^{16} = 65536 \text{ levels})$, 24 bits $(2^{24} = 16777216 \text{ levels})$
 - image processing adds 32 bits ($2^{32} = 4294967296$ levels)
- Besides integer quantizations there are floating point 32 bit and 64 bit quantizations.

Wave Coding Methods

Dialogue Systems

Ludek Barte


- Direct storing the values from previous quantization PCM coding (Pulse-Code Modulation).
 - sound signal changes are relatively slow only small differences of neighbouring samples.
 - Big redundancy of data.
 - Big amplitude dispersion problem (big quantization step may cause big quantization error, small quantization step may cause sample overflow in case of amplitude increase).
- Differential PCM stores neighbouring sample differences
- Adaptive PCM PCM with variable quantization step value – quantization step adapts to the signal amplitude.

Differential Pulse Code Modulation


Dialogue Systems

Luděk Bártek

- Based on following assumptions:
 - Difference of neighbouring samples is much less than the value of a sample.
 - The following sample can be relatively precisely estimated as a previous samples linear combination.
- Differential PCM coding block schema

- s''(n) sample assumption
- s'(n) reconstructed signal, gained from the following sum quantized signal $\delta'(n)$ a s''(n)
- $\delta(n) = s(n) s''(n)$

Adaptive Pulse Code Modulation

Dialogue Systems

Luděk Bárte

- Big signal amplitude changes may cause:
 - Inaccurate week signal capture amplitude is too small, comparable to quantization step (quantization step is too big).
 - Strong signal distortion overflow of a range of values used to signal coding (quantization step is too small).
- Solution: adapting quantization step to a signal amplitude.