Dialogue systems Luděk Bártek

Speech Recognitio

Continuous Speech Recognition

Language Model

Speech Recognition Grammars

Utterance Semantic Interpretatic

Dialogue systems

Luděk Bártek

Laboratory of Searching and Dialogue, Fakulty of Informatics, Masaryk University, Brno

spring 2023

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Speech Recognition

Dialogue systems

Speech

- Recognition Continuous Speech
- Language Model
- Speech Recognition Grammars
- Utterance Semantic Interpretatio

- Continuous speech recognition transforms continuous speech into the corresponding text.
- Commend/isolated words recognition.
- Speech recognition principles:
 - 1 Acquire feature vectors using a short-term signal analysis method.
 - 2 Classify the speech using the feature vectors from previous step.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Dialogue systems

Speech Recognition

Continuous Speech Recognition

Language Model

Speech Recognition Grammars

Utterance Semantic Interpretatio • The principle differences to the isolated word recognition:

- the pattern database can not be created
- the prosodic factors must be taken into the account
- there is a need to separate the words (find the words borders)
- the algorithm must deal with filler sounds and speech errors.
- Solution statistical approach:
 - a language model
 - a user model.
- Example: HMM returns the same probability for Czech words "máma" (mother) and "nána" (not a very smart girl)
 mother will be used with higher probability – is used often.

Language Models

Dialogue systems

Luděk Bártek

Speech Recognitio

Continuous Speech Recognition

Language Model

Speech Recognition Grammars

Utterance Semantic Interpretatic

There are:

- a sequence of words (utterance) $W = (w_1, \ldots, w_n)$
- a sequence of acoustic vectors $O = (o_1, \ldots, o_t)$.
- We want to find W* (set of all utterances), that maximize P(W|O).
- According to the Bayes' rule:

$$P(W^*|O) = \max P(W|O) = \max \frac{P(W) * P(O|W)}{P(O)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Language Models – cont.

Dialogue systems

Luděk Bártek

Speech Recognitio

Continuous Speech Recognition

Language Model

Speech Recognition Grammars

Utterance Semantic Interpretatic

- We need following to calculate the maximum of probability:
 - a speaker model P(O|W)
 - a language model P(W).
- The speaker model can be replaced by the probability of generating the W using the corresponding Markov Model
- The trigram model:
 - Experimentally evaluated that:

$$P(w_n|w_1\ldots w_{n-1}) \cong P(w_n|w_{n-2}w_{n-1})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Topic Recognition

Dialogue systems

Luděk Bártek

Speech Recognitio

Continuous Speech Recognition

Language Model

Speech Recognition Grammars

Utterance Semantic Interpretatio

- The continuous speech recognition is in a range 50 % 99 % in dependency of a task, a language, ...
- The recognition success rate can be improved by limiting the recognition domain:
 - a topic recognition
 - using speech recognition grammars.
- The well-known topic:
 - a change of the state space and trigrams probabilities:
 - for example in stock market news was recognized either "honey" or "money"?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

a more accurate language model can be developed.

Speech Recognition Grammars

Dialogue systems

- Luděk Bártek
- Speech Recognitio
- Continuous Speech Recognition
- Language Model
- Speech Recognition Grammars
- Utterance Semantic Interpretatio

- A general continuous speech recognition accuracy can drop to 50 % approx.
- The improvement can be reached by the recognition domain restriction – a specification of accepted inputs for example.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The speech recognition grammars can be used:
 - context-free grammars
- Used grammars notations:
 - a logic programming notation
 - proprietary solutions
 - open standards JSGF, W3C SRGS, ...

Speech Recognition Grammars

Java Speech Grammar Specification (JSGF)

Dialogue systems

- Luděk Bártek
- Speech Recognitio
- Continuous Speech Recognition
- Language Model
- Speech Recognition Grammars
- Utterance Semantic Interpretatio

- Platform and reseller independent textual grammar format.
- Used for a speech recognition.
- Part of the Java Speech API.
- Uses the Java language style and conventions.
- Present version 1.0 (Oct 1998).
- Used in the Použit např. v rozpoznávači Sphinx-4 recognizer, VoiceXML interpreter VoiceGlue, ...
- More details in the 2nd half of semester a dialogue interface creation tools.

Speech Recognition Grammar JSGF example

Dialogue systems

Luděk Bártek

Speech Recognitio

Continuous Speech Recognition

Language Model

Speech Recognition Grammars

Utterance Semantic Interpretatior #JSGF

<root> = I want to go by <what> .|

I want to go by <what> from <where> to <where> .| I want to go by <what> from <where> to <where> at <when> .;

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

<what> = train | bus;

<where> = <city>;

<when> = <dateTime>;

Speech Recognition Grammars

W3C Speech Recognition Grammar Specification (SRGS)

Dialogue systems

Luděk Bártek

- Speech Recognitic
- Continuous Speech Recognition
- Language Model
- Speech Recognition Grammars
- Utterance Semantic Interpretatio

- The W3C standard.
- Current version 1.0 (Mar 2004).
- Defines the notation of rules and their referencing.
- Two types of the notation:
 - XML
 - ABNF (Augmented BNF).
- More details on 2nd half of semester the topic dialogue interface creating.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

W3C SRGS Example

Dialogue systems

Luděk Bártek

Speech Recognition

Language Model

Speech Recognition Grammars

Utterance Semantic Interpretation

```
#ABNF 1.0 UTF-8
root $greeting;
language en-GB;
mode voice;
$greeting = hi
```

```
<?xml version="1.0" encoding=" utf-8"? >
<grammar root=" greating" xml:lang=" en-GB" version="1.0" >
<rule id=" greating" >
hi
< /rule>
< /grammar>
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Utterance Semantic Interpretation

Dialogue systems

- Luděk Bártek
- Speech Recognitio
- Continuous Speech Recognition
- Language Model
- Speech Recognition Grammars
- Utterance Semantic Interpretation

- Objective computer understandable interpretation of the informations entered by user.
- Example:

I want to buy the Shakespeare's The Taming of the Shrew.

- action = shopping
- title = The Taming of the Shrew
- author = Shakespeare
- Representation the (attribute, value) pairs.
- General semantic analysis steps:
 - acquiring the utterance structure (syntactic analysis)
 - 2 the part of the speech interpretation
 - **3** deriving the whole utterance interpretation from the parts of the speech interpretations.
- The utterance semantic interpretation ≠ the utterance intended sense (pragmatic interpretation).

Utterance Semantic Interpretation

Implementation

Dialogue systems

- Luděk Bártek
- Speech Recognition Continuous Speech Recognition Language Model
- Speech Recognition Grammars
- Utterance Semantic Interpretation

- Attributes containing a part of speech semantic interpretation are assigned to the speech recognition grammar rules.
- We can perform operations used to derive the semantic interpretation of the entire utterance from the interpretations of its parts.
 - The ECMAScript (see Semantic Interpretation for Speech Recognition can be used.
- To find the intended utterance meaning we need to process its context as well.
 - The context can be described using finite automaton with output (the Mealy automaton – see later).

Semantic Interpretation Description

Dialogue systems

Luděk Bártek

Speech Recogniti

Continuous Speech Recognition

Language Model

Speech Recognition Grammars

Utterance Semantic Interpretation JSGF:

. . .

- Assigned using tags
- notation {semantic interpretation}
- < sentence >=< intro >< title > od < author >
- < titlie >= Pejska a kočičku
- {Povídání o pejskovi a kočičce}|
- (Zlou ženu|Zkrocení zlé ženy) {Zkrocení zlé ženy} ...
- SRGS the SISR standard :
 - standard W3C Voice Browser Activity.
 - uses ECMAScript.
 - The semantic interpretation is added to the rules using the *tag* tag or attribute.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 The semantic interpretation is is return back using the JSON notation.