Dialogue systems Luděk Bártek

Question Answering Systems for Relational Databases

Database, Attributes and Search Trees

Dialogue systems

Luděk Bártek

Laboratory of searching and dialogue, Fakulty of Informatics, Masaryk University, Brno

spring 2023

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Question Answering Systems for Relational Databases

Dialogue systems

Question Answering Systems for Relational Databases

Database, Attributes and Search Trees Database structure is defined by relational schema (system of attributes)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 System tries to find requested data using the attribute values entered by user, not necessarily all.

Pawlak's Information System

Dialogue systems

Question Answering Systems for Relational Databases

Database, Attributes and Search Trees

- Author Zdzislaw I. Pawlak (1926 2006), polish mathematics, member of the Polish Academy of Science.
- Pawlak's IS quaternion S = (U, T, V, f):
 - U set of objects
 - T set of attributes
 - V set of attributes values
 - $f: U \times T \to V$
- Pawlak's IS formally describes relations between objects, their attributes and values.
- Dialogue system relation searching the minimal set of attributes identifying each object.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pawlak's IS

Example

Dialogue systems					
Luděk Bártek					
Question Answering Systems for					
Relational Databases		Element ₁	Element ₂	Element ₃	Element ₄
Database, Attributes and Search Trees	Attribute ₁	1	1	0	0
	Attribute ₂	0	1	1	1
	Attribute ₃	1	1	1	0

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Pawlak's IS

Dialogue systems

Luděk Bártek

Question Answering Systems for Relational Databases

Database, Attributes and Search Trees

- Pawlak's IS Search Tree construction:
 - We gradually take individual attributes contained in the IS and ask on their presence/value.
 - 2 Leaves are the particular elements stored in IS.
- Relation to system initiative dialogue interface:
 - We ask the value/presence of an attribute on the level corresponding the attribute.
 - User's answer determines the way the dialogue continues.
- The mixed initiative dialogue can be used as well:
 - **1** User fills the values of any number of elements at once.
 - **2** System will process the answer and asks for missing values.

Pawlak's IS Search Trees Examples

Obrázek: Another Pawlak's IS search tree 4

イロト 不得 トイヨト イヨト

∃ \(\mathcal{O}\) \(\lambda\) \(\lambda\)

Pawlak's IS

Interesting Problems

Dialogue systems

Luděk Bártek

Question Answering Systems for Relational Databases

Database, Attributes and Search Trees Select a minimal set of the IS attributes identifying every element.

	Element ₁	Element ₂	Element ₃	Element ₄
<i>attribute</i> ₁	1	1	1	0
attribute ₂	1	1	0	1
attribute ₃	1	0	1	1
attribute ₄	1	1	0	0
<i>attribute</i> 5	1	0	1	0

Has been proved the problem is NP-Complete.

- Select optimal search tree according the set of elements.
 - Criterion the tree height for example the problem is NP-complete again.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

There are approximative algorithms.

Question Answering Systems Examples

Dialogue systems

- Question Answering Systems for Relational Databases
- Database, Attributes and Search Trees

- General question answering system Start
- General practitioners question answering system Hermes
- Unmaintained and inaccessible NLP FI question answering system UIO

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bot Libre Chatbots, you may create your own chatbot.