Dialogue systems Luděk Bártek

Speech Synthesis

Phonetic Transcriptior

Frequency-domain Speech Synthesis Time-domain Speech Synthesis

Dialogue systems

Luděk Bártek

Laboratory of Searching and Dialogue, Fakulty of Informatics, Masaryk University, Brno

spring 2023

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Speech Synthesis

Dialogue systems

Luděk Bártek

Speech Synthesis

- Phonetic Transcription
- Frequency-domain Speech Synthesis Time-domain Speech Synthesis

- Objective conversion of written text into the speech.
 - Resulting speech should sound as natural as possible.

- Natural speech should contain:
 - correct intonation
 - correctly places stresses
 - word stress
 - sentence stress
 - correct co-articulation
 - correct rhythm (timing)
 - ...

Speech Synthesis Kinds

Dialogue systems

Ludek Barter

Speech Synthesis

- Phonetic Transcription
- Frequency-domain Speech Synthesis Time-domain Speech Synthesis

- Frequency-domain synthesis simulates the human vocal tract.
- Time-domain synthesis concatenates speech segments into a bigger parts of speech (sentence, utterance, ...)
- Corpus-based kind of time-domain synthesis uses the speech corpus instead of a segment database.

- Problem-oriented synthesis:
 - time-domains synthesis variant
 - uses bigger parts of speech sentences, . . .
 - příklady:
 - station radio announcements
 - automatic phone-support lines
 - ...

Speech Synthesis Phases

Dialogue systems

Luděk Bártek

Speech Synthesis

- Phonetic Transcription
- Frequency-domain Speech Synthesis Time-domain Speech Synthesis

1 Text phonetic transcription.

- 2 Transcribed text synthesis:
 - Frequency-domain synthesis selection of speech synthesis parameters (F₀/white-noise generator, formants and their intensities, ...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Time-domain synthesis – proper segments selection and their concatenation.

3 Possible post-processing:

- intonation addition
- stress addition
- ...

Phonetic Transcription

Dialogue systems

Luděk Bártek

Speech Synthesis

Phonetic Transcription

Frequency-domain Speech Synthesis Time-domain Speech Synthesis

- Used to correct, unambiguous textual speech recording.
- Uses phonetic alphabet:

. . . .

- The International Phonetic Alphabet (IPA) part of the UNICODE standard
- SAMPA (Speech Assessment Method Phonetic Alphabet)
 - 7bit IPA transcription
 - proposed in 80th years of 20th century
 - used in many TTS
 - figure transcription of sentence "Czech is a beautiful language.":

tSeSTina je kra:sni: jazik

IPA Demo

Dialogue systems

Luděk Bártek

Speech Synthesis

Phonetic Transcription

Frequency-domain Speech Synthesis Time-domain Speec Synthesis

CONSONANTS (PULMONIC)

	LA9IAL		CORONAL				DORSAL			RADICAL		LARYNGEAL
	Bilabial	Labio- dental	Dental		Palato- alveolar	Retroflex	Palatal	Velar	Uvular	Phæyngea	Epi- glottal	Glottal
Nasal	m	ŋ	n			η	n	ŋ	N			
Plosive	рb	գ գ		t d		td	сĵ	kg	qG		2	2
Fricative	φβ	fv	θð	sz	∫ 3	şz	çj	хγ	Хк	ħ s	нс	h ĥ
Approximant		υ		r		ન	j	պ	Б	1		пп
Trill	В			r					R		Я	
Tap, Flap		v		ſ		r						
Lateral fricative				ŧβ		t	K	¢.				
Lateral approximant				1		l	λ	L				
Lateral flap				٦								

Where symbols appear in pairs, the one to the right represents a modally voiced consonant, except for marmured $\hat{\kappa}$. Shaded areas denote articulations judged to be impossible, Light grey letters are unofficial extensions of the IPA.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Phonetic Transcription

Dialogue systems

Luděk Bártek

Speech Synthesis

Phonetic Transcription

Frequency-domain Speech Synthesis Time-domain Speech Synthesis

- The computer can not store transcription of all sentences (infinite number):
 - Phonetic transcription should be assured.
- Phonetic Transcription Rules:
 - May have regional character.
 - Example pronunciation of Czech sentence "na shledanou":
 - Bohemia naschledanou
 - Moravia nazhledanou.
 - Both variants are literary correct.
 - The transcription need not to use all letters of the given alphabet (i/y = i, c = ts, ...)

It takes the coarticulation into the account (form of sonority).

Czech Phonetic Transcription Rules

Dialogue systems

Luděk Bártek

Speech Synthesis

Phonetic Transcription

Frequency-domain Speech Synthesis Time-domain Speech Synthesis

■ x → ks — start of the word, before vowel, in-between vowels, before voiceless consonant or at the end of the word.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $x \rightarrow gz$:
 - exvowel
 - before voiced consonant

Consonant Conjugation Changes

Dialogue systems

Luděk Bártek

Speech Synthesis

Phonetic Transcription

Frequency-domain Speech Synthesis Time-domain Speech Synthesis

- Occurs at conjugation of consonants.
- Caused by speech tract changes.
- Two kinds:
 - form of speech change of sonority of pair consonants:
 - $\blacksquare \ \mathsf{ZPS} \to \neg \ \mathsf{ZPS} : \mathsf{dub} \to \mathsf{dup}, \ \mathsf{zp\check{e}v} \to \mathsf{spjev}$
 - $\blacksquare \mathsf{NPS} \to \neg \mathsf{NPS}: \mathsf{sběr} \to \mathsf{zbjer}, \mathsf{kdy} \check{\mathsf{z}} \to \mathsf{gdi}\check{\mathsf{s}}$
 - form of articulation at conjugation of two consonants with different articulation:

- nk/ng banka, tango
- mv/mf tramvaj, nymfa
- nť/nd punťa, pindík
- dň odpovědně, sto dní, vodní
- Is → c
- tš → č
- $\blacksquare \ \mathsf{ds} \to \mathsf{c}$
- $\blacksquare \ d \check{s} \to \check{c}$

Frequency-domain Speech Synthesis

Dialogue systems

Luděk Bártek

Speech Svnthesis

Phonetic Transcription

Frequency-domain Speech Synthesis

Time-domain Speec Synthesis

- Simulates voice formation of in vocal tract.
- Stores:
 - frequency characteristics of voice used for synthesis
 - excitation parameters
- Principle:
 - Voice tract emulation using:
 - frequency generators
 - filters
 - amplifier(s).
 - The components are controlled by model parameters.

- The following source encoding forms are used:
 - formant type TTS
 - LPC TTS
 - HMM based TTS
 - ...

Formant Type Speech Synthesis

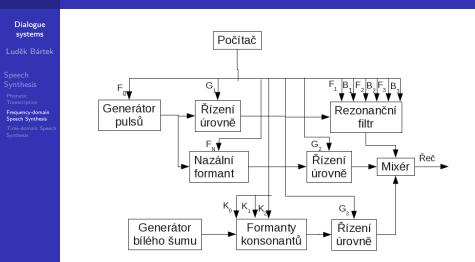
Dialogue systems

Speech

Synthesis

Phonetic Transcription

Frequency-domain Speech Synthesis


Time-domain Speed Synthesis

- Reconstructs vocal tract formants using the serial and parallel connection of several resonant circuits.
- The format frequencies and bandwidths are controlled electronically.
- Synthesizer parameters:
 - *F*₀ –basic vocal chord frequency
 - *F_i* − formants
 - F_N nasal formant
 - B_i − F_i band filters
 - *G_i* Gain/Amplification control parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• K_i – formants for consonants.

Serial Formant Type Synthesizer Schema

Obrázek: Serial Formant Type Synthesizer Block Schema

LPC synthesizer

Dialogue systems

Luděk Bártek

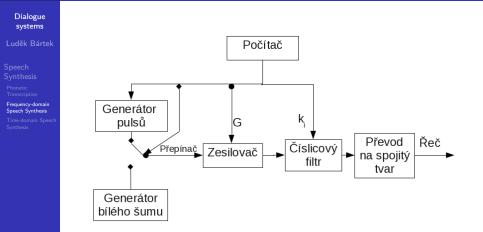
Speech Synthesis

Phonetic Transcription

Frequency-domain Speech Synthesis

Time-domain Speed Synthesis

LPC synthesizer characteristics:


- Basic vocal chord tone period T_0
- sound characteristics voiced/unvoiced
- excitation signal amplitude G
- digital filter coefficients.

Obtaining digital filter coefficients:

analysed microsegment LPC spectral envelop peaks

- roots of source filter characteristic equation
- reflex coefficients.

LPC Synthesizer Schema

Obrázek: LPC Synthesizer Block Schema

Frequency-domain Synthesis

Summary

Dialogue systems

Luděk Bártek

Speech Svnthesis

Phonetic Transcription

Frequency-domain Speech Synthesis Frequency-domain synthesis advantages and disadvantages:

- + Small memory requirements model of the used speaker.
- + Synthesis can be realized using hardware.
- Resulting voice is not as natural as when using time-domain synthesis.
 - Mathematic model accuracy problem.
- Software frequency-domain synthesis has higher computational demands then time-domain synthesis.
- Common usage:
 - time-domain synthesis post-processing:
 - adding sentence intonation
 - adding sentence and word stress
 - adding next prosodic factors.
 - Sometimes is used on devices with insufficient memory capacity (mobile phones, PDA, ...).
 - Sometime is used for multilingual synthesis.
- See J. Psutka Komunikace s počítačem mluvenou řečí for example.

Time-domain Speech Synthesis

Dialogue systems

Luděk Bártek

Speech Synthesis

Phonetic Transcription

Frequency-domain Speech Synthesis

Time-domain Speech Synthesis

- Objective conversion of a general text into a speech.
- Based on a concatenation of a speech segments.
- Different length of a basic segments are used:
 - Longer segments:
 - the prosodic speech characteristics can be modelled better
 - higher memory demands higher number of segments (up to 2ⁿ, where n is the segment length).
 - segments examples words, parts of sentence, sentences,
 - Shorter segments:
 - Worse possibilities to model the prosody (sentence intonation, stresses, ...)
 - smaller memory requirements smaller amount of smaller segments.

Commonly Used Speech Segments

Dialogue systems

5.....t.

- Speech
- Phonetic Transcription
- Frequency-domain Speech Synthesis
- Time-domain Speech Synthesis

- Allophones:
 - positional variants of phonemes contain
 - phoneme
 - neighbourhood affected by coarticulation.
 - allophones count $-n^3$ (n number of phonemes).
- Diphones:
 - starts in the middle of the first phoneme and ends in the middle of the next phoneme
 - diphones number *n*²
 - Commonly used in speech synthesis and speech recognition (MBrola synthesizer)

Commonly Used Speech Segments

Dialogue systems

Speech Synthesis

- Phonetic Transcription
- Frequency-domain Speech Synthesis
- Time-domain Speech Synthesis

- Triphones:
 - Starts in the middle of previous phoneme, contains entire middle phoneme and ends in the middle of the next phoneme.

- Triphones number n^3 .
- Commonly used in speech synthesis and recognition.
- Syllable segments:
 - should correspond to syllables as much as possible.
 - Length- 1 3 phonemes.
 - Used in the TTS system Demosthénes.

Time-domain Speech Synthesis Syllable

Dialogue systems

Luděk Bártek

Speech Svnthesi

Phonetic Transcription

Frequency-domain Speech Synthesis

Time-domain Speech Synthesis

Syllable:

- 1st class primary school children learns how to divide words into syllables.
- Smallest organizational speech part.
- The syllable structure can not be derived ambiguous division of some words into syllables:
 - funk-ční vs. funkč-ní
- Total number of Czech syllables approximately 10 000.

Time-domain Speech Synthesis

Syllables Structure

Dialogue systems

Luděk Bártek

Speech Synthesis

- Phonetic Transcription
- Frequency-domain Speech Synthesis
- Time-domain Speech Synthesis

Syllable structure:

- preature (onset)
- nucleus (vocalic syllable core) on Czech it can be:
 - either vowel or diphthong
 - sonor k*r*k for example
 - fricative pst for example
 - nasal sed m for example
- coda is optional
- nucleus + coda forms the syllable core
- slopes:
 - preature and coda
 - are formed by one or more consonants.

Time-domain Synthesis

Syllable Segments

Dialogue systems

Luděk Bártek

Speech Synthesis

Phonetic Transcription

Frequency-domain Speech Synthesis

Time-domain Speech Synthesis Define artificially:

- solution of syllable borders ambiguity.
- The frequented Czech syllable types:
 - V (vowel/diphthong) ú kol
 - KV (consonant-vowel) vo da
 - KVK jed-not-ka
 - KK tr-sy
 - KKV tma
 - KKVK dmout
- These syllable segments form more than 95 % of syllable.
- Allows automatic text segmentation.
- Used in TTS Demosthénes (doc. Kopeček, LSD FI) for example.

Synthesis

Dialogue systems

Luděk Bártek

Speech Synthesis

Phonetic Transcription

Frequency-domain Speech Synthesis

Time-domain Speech Synthesis 1 Phonetic transcription.

- **2** Text segmentation corresponding to the used speech segments.
- 3 Corresponding acoustic segments selection from a segment DB.
- 4 Segments concatenation
 - The segment concatenation should be continuous and smooth:
 - the end of the first segment should be same or very close to the start of the second segment
 - the first derivation of the end of 1st segment should be same or very close to the 1st derivation of the start of second segment.

5 Optional post-processing

- prosody adding.
- ...

Time-domain Synthesis

Corpus Based Synthesis

Dialogue systems

Luděk Bártek

Speech Synthesis

Phonetic Transcription

Frequency-domain Speech Synthesis

Time-domain Speech Synthesis

- Concatenative time-domain synthesis.
- Uses the speech corpus as a segment database.
 - Contains tagged speech.
 - Tagging contains:
 - phonetic transcription of the speech
 - speech segments borders
 - F_0 and optionally other formant progress.
 - Allows to select more specific speech segments:
 - decreases the computational complexity of concatenation and post-processing.
- Segment selection algorithm:
 - **1** Select segments according the phonetic transcription.
 - **2** Select best segment that best follows-up.

Time-Domain Synthesis

Frame-based Synthesis

Dialogue systems

Luděk Bártek

Speech Synthesis

Phonetic Transcription

Synthesis

Frequency-domain Speech Synthesis Time-domain Speech

- Mostly used as a problem oriented synthesis.
- Synthesised speech is formed from:
 - frames constant part of the sentence
 - slots the variable parts of the speech.
- Adventages:
 - The frames are pre-recorded and may contain the intonation.
 - Only the slot content is synthesised:
 - good specified set of words
 - whole word can be used.

Example:

train station radio announcement:

The passenger train number <train number> from <station of origin> goes to the platform <platform number> at <time> o'clock.