Service Oriented
Architecture and
Web Services

Martin Kuba, ICS MU
makub@ics.muni.cz

PA160 lecture, spring 2023

Overview

RPC, RMI, SOA, Microservices

Web Services

SOAP/WSDL

REST

Web APls

OpenAPI

AJAX, Mash ups

Authentication and Authorization in Web

Services
o SAML, OAuth 2, OpenlD Connect, JWT

Glossary

AJAX - Asynchronous JavaScript and XML
API - Application Programming Interface

GUI - Graphical User Interface

HTTP - Hypertext Transfer Protocol

HTML - Hypertext Markup Language

DL - Interface Description Language

JSON - JavaScript Object Notation

REST - Representational State Transfer
SSL/TLS - Secure Sockets Layer/Transport Layer Security
SAML - Security Assertion Markup Language
URL - Uniform Resource Locator

XML - Extensible Markup Language

Communication in Distributed Systems

e synchronicity point of view
o synchronous — the calling side blocks until
an answer is received
o asynchronous — the calling side does not
walit, it is notified of an answer
e persistency point of view
o transient (disappearing with time)
o persistent (storing messages until receiver is
ready)
e TCPis transient, JMS or IBM MQ are persistent
e all 4 combinations are possible

RPC - Remote Procedure Calls

e distributed systems are communicating by sending

messages

e harder to use than local procedure calls

e remote procedure calls try to hide the complexity

e request-response communication:

o call a procedure, pass parameters by value

o return values

e client stub and server skeleton generated from IDL

o used locally in a given programming language

o they do marshalling/serialization, communication,
unmarshaling/deserialization

e examples: DCE/RPC, XML-RPC, SOAP

RMI - Remote Method Invocation

e distributed object-oriented systems need to pass
parameters by reference

e a distributed object has state, interface, and
iImplementation

e examples: CORBA, Java RMI, Microsoft DCOM

e original Java RMI (JRMP - Java Remote Method
Protocol) is pure Java, it can pass implementation of
classes between the server and the client

e Java RMI works only between the same version of JVM

e l|ater Java RMI-IIOP (Internet Inter-ORB [Object
Request Broker] Protocol) is based on CORBA

e CORBA implementations from different vendors were
never truly interoperable

RMI Problems

e RMI works only in systems under a centralized
control

e thus RMI does not scale to Internet-size

e synchronous communication does not scale

e tight coupling - versioning and evolution of both
communicating ends are difficult

e distribution cannot be transparent because of
possible partial failure

SOA - Service Oriented Architecture

e SOA s an architectural style whose goal is to
achieve loose coupling among interacting
software agents. A service is a unit of work done
by a service provider to achieve desired end
results for a service consumer [1]

e in SOA, services provide only interface

e the interface is defined by messages, not by
operations on data types

e data types are not interoperable, e.g. String([] in
Java is different from string[] in .NET, the former
may contain nulls, the latter must not

Difference between OO and SOA

e from [1] Hao He: What is Service-Oriented
Architecture:
o a CD player offers a CD playing service
o different quality of service on a portable player
and on an expensive stereo
o in object oriented programming style, every
CD would come with its own player and they
are not supposed to be separated
e SOA more corresponds to how interactions are
organized in the real world
e Joose coupling - independent evolution of clients
and services operated by different organizations

https://www.xml.com/pub/a/ws/2003/09/30/soa.html
https://www.xml.com/pub/a/ws/2003/09/30/soa.html

Microservices

e popular, but no sound definition

e services are fine-grained and the protocols
are lightweight

e microservices are composed using Unix-like
pipelines

e inter-service calls over a network have
a higher cost in terms of network latency and
message processing time than in-process
calls

e difficult to maintain data consistency among
transaction participants

A web service is a software system
designed to support interoperable
machine-to-machine interaction over a
network.

(W3C, Web Services Glossary)

Brief web services history

1
1
1
1
1
1
1
1
1

989 - World Wide Web invented

991 - HTTP 0.9 specified

992 - Internet at Masaryk University :-)

993 - first GUI web browser Mosaic

993 - Common Gateway Interface for executing programs
995 - JavaScript introduced by Netscape browser
996 - SSL 3.0 (first usable encryption)

998 - XML 1.0 (the first interoperable text data format)
998 - SOAP 1.1 by Microsoft (text-based RPC)

2004 - WS-Interoperability Basic Profile (SOAP usable)

Brief web services history (2)

2000 - REST defined by Roy Fielding

2001 - JSON invented (simple interoperable data format)
2004 - GMail, Google Maps, Web 2.0, wikis, mash-ups
2005 - AJAX, Yahoo offers JSON web services, SAML
2006 - OpenlD 2.0 (decentralized authentication)

2008 - HTMLS (first public working draft)

2010 - mobile devices with small screens

2012 - OAuth 2.0 (authorization framework)

2013 - responsive web design as an answer to devices
with different screen sizes

Brief web services history (3)

2006-2013 - cloud computing (Amazon 2006,
Microsoft 2008, Google 2013)

20°
20°
20°
20°
20°
20°

4 - HTMLS finalised (APls for in-browser apps)
4 - OpenlD Connect (authentication standard)
5-HTTP/2, JSON Web Tokens

6 - OpenAPI (IDL for JSON web services)

8 - TLS 1.3 (weak points removed)

9 - WebAuthN (hardware authenticators)

2021 - Self-sovereign identity
2022 - HTTP/3.0

HTTP Protocol Versions

HTTP/0.9 - 1989 - Tim Berners-Lee at CERN

o GET only, no HTTP headers, no status/error codes, no versioning

HTTP/1.0 - 1996 - IETF and W3C

o methods GET, HEAD, POST

o headers, status codes

o TCP connection terminated immediately after each response

HTTP/1.1 - 1997

o methods GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS

o persistent and pipelined connections, chunked transfers,
compression/decompression, content negotiations, virtual hosting

HTTP/2.0 - 2015

o binary encoding

o single TCP connection with multiplexing of requests

o mandatory TLS 1.2+

HTTP/3.0 - 2022

o QUIC/UDP instead of TCP

o mandatory TLS 1.3+

15

My definition of a web service

web service client communicates with a web
server requesting a web resource identified by
a URL, using HTTP protocol secured by TLS
exchanging messages in JSON or XML formats

this definition covers

e SOAP/WSDL services
e REST APlIs

e dynamic web pages using AJAX

SOAP/WSDL web services

SOAP was Simple Object Access Protocol
WSDL is Web Service Description Language
technology for RPC (not RMI!) using exchange of
XML messages

syntax based on XML Schema and Namespaces
WS-Interoperability Basic Profile needed to
ensure interoperability, it requires SOAP 1.1
many WS-* extensions

SOAP request

<?xml wersion="1.0"7>

<soap:Envelope
xmlnsg:soap="http://www.w3.0rg/2003/05/s0ap-envelope/"
soap:encodingStyle="http://www.w3.0rg/2003/05/s0ap-encoding">

<soap:Body>
<m:GetPrice xmlns:m="https://www.w3schools.com/prices"”>
<m:Iten>Apples</m:Item>
</m:GetPrice>
</goap:Body>

</goap:Envelope>

SOAP response

<?2xml version="1.0"2>

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2003/05/s0ap-envelope/ "
gsoap:encodingStyle="http://www.w3.0rg/2003/05/s0ap-encoding”>

<soap:Body>
<m: GetPriceResponse xmlns:m="https://www.w3schools.com/prices">
<m:Price>l.90</m: Price>
</m:GetPriceResponse’>
</soap:Body>

</soap:Envelope>

SOAP/WSDL history

e started as XML-based Remote Method
Invocation protocol

e changed to Remote Procedure Call protocol
(no objects - SOAP is not an abbreviation now)

e introduced its own type system
o big problems with compatibility followed

e later replaced by XML Schema type system
e main lesson learned - remote interfaces should
be defined by messages, not operations

SOAP versus REST

e enterprises prefer complicated stack
o XML
SOAP, WSDL, WS-Interoperability
WS-* (WS-Security, WS-Addressing, ...)
persistent connections - queues
RPC based
complex tools and frameworks, need an IT department

e Internet crowd prefers simplicity
JSON

HTTP requests to URLs, OpenAPI
AJAX in browsers

transient connections - TCP/IP, HTTP
scalable using REST

O O O O O

O O O O O

Web APIs

e well-known APIs

O
O

Google APIs (Calendar, GMail, Maps, ...)
Facebook API

o Twitter API

O

based on HTTP+TLS+JSON+OAuth

e third party clients
o web, mobile (Android, i0OS), desktop, embedded (TV)

e OAuth

O
O

developer registers an application at API provider

user authorises the application to use certain operations
In the API, giving the application an access token
application uses the token to use the API on behalf of
the user

JSON - JavaScript Object Notation

kind: "calendar#events",

etag: "\"GZxpEFttRDﬂOmLHnWRxLHHWPGWk/VpPWPyIKiQCungCWOVYBMIHGPOK"",
summary: "EGI.eu Events",

updated: "2013-04-22T06: 00: 02, 0002" ,

timeZone: "Europe/Amsterdam”,

accessRole: "reader",

- items:

= 1

(

kind: "calendar#event",
etag: "\"GZxpEFttRDAOMLHNWRXLHHWPGwK / Z2NhbDAWMDAXM] Y SODQONDCWMDK ZMDAWY " ",
id: "vsl7ehlthhfrlgketatosshors"”,
status: "confirmed",
htmlLink: https://www.google.com/calendar/event?eid=dnMxN2VobHRoaGZybGdrZT BhMGES0CGhvcnMgZXZ1 bnRzQGYnassldyg,
created: "2010-02-12T08:47:42.0002",
updated: "2010-03-29T06:34:30.0032",
summary: "EGEE to EGI Transition Meeting for User Community and Operations",
description: "A focus on the transition of the EGEE MA2, NA3Z and NA4 activities to the EGI era with significe
followed by more general transition of EGEE operations to NGI operations from Tuesday afternoon. A detailed :
JfconferenceDisplay.py?confId=1",
location: "Mikhef",
creator: {
email: "steven.newhouse@egl.eu",
displayName: "Steven MNewhouse"

’
organizer: 1
email: "events@egi.eu",
displayName: "EGI.eu Events",
self: true

T
start: {

dateTime: "2010-03-01T13:00:00+01: 00"
e
end: {

dateTime: "2010-03-03T12:00:00+01:00"
}’

visibility: "public",
icaluib: "vsl7ehlthhfrlgke0ato9shors@google.com”,
sequence: 0O

The same Google Cal event in XML

- <entry>
- <jid=>
http: v google comfcalendarffeeds/events%40eqi eu/privateffullivs 1 7ehlthhfrigke0a0o98hors
<fid=
<published=2010-02-12T08:47.42 000Z</published>
<updated=2010-03-29T06:34:30.000Z</updated=>
<category scheme="http.//schemas google com/g/2005&kind" term="http://schemas .google com/g/2005#event"/=
- <title type="text">
EGEE to EGI Transition Meeting for User Community and Operations
<ftitle>
- <content type="text">
A focus on the transition of the EGEE NA2, NA3 and NA4 activities to the EGI era with significantly reduced EC funding during the firs
to NG| operations from Tuesday afternoon. A detailed agenda is available - https:fwww egi eufindicofconferenceDisplay py?confld=1
</content>
<link rel="alternate" type="text’html" href="https: /v google comfcalendarfevent?eid=dnixN2VobHRoaGZyb GArZ TBhMGE50Ghyve
<link rel="self" type="applicationfatom+xml" href="https:/fwww google comicalendarifeeds/events%40egi euprivatefullivs 1 Tehlthhfrlg
- <author=
<name:>Steven Newhouse</name>
<email=steven newhouse@eqgi eu</email=
<fauthor>
- <gd:comments>
<gd:feedLink href="https /fiwww google comicalendarffeeds/events%40eqi eu/private/fullivs 1 7ehlthhfrigke0alo98horsfcomments/=
<fgd:comments>
<gd:eventStatus value="http://schemas.google com/gf2005#event confirmed"f=
<gd:where valueString="Nikhef"/=
<gd:who email="events@egi eu" rel="http://schemas.google com/g/2005#event organizer" valueString="events@egi eu"/>
<gd:when endTime="2010-03-03T12:00:00.000+01:00" startTime="2010-03-01T13:00:00.000+01:00"f>
<gd:transparency value="http://schemas google com/g/2005#event opaque'f=
<gd:visibility value="http:/fschemas .google.com/gf2005#event public"f=
<gCal:anyoneCanAddSelf value="false"/>
<gCal:guestsCanlnviteOthers value="true"/>
<gCal:guestsCanModify value="false"/>
<gCal:guestsCanSeeGuests value="true"/>
<gCal:sequence value="0"/>
<gCal:uid value="vs1 7ehlthhfrlgke0alo98hors@google.com"/=
<fentry=
<ffeed>

YAML 1.2
IS superset
of JSON

.
anatomy.yml* *

Mcm l__,l Solit])| E:e-:-s-;ﬂ] Title: ! ‘ ‘_T_)‘g B2 Af, e-

> & | MOy @

L)
weu
[)

i (8|

2 I | 2 & i

cE R

$YAML 1.2 YAML directive (optional)

YAML Ain't Markup Language Comment
name: & 14001
e - e
e Doe reference to anchor
indent with spaces, not tab

items: blank lines okay

—|id: Al123
desc: foo List with hypen or inline format
qty: 4 /O
£

- |{id: B789,/égsqi ;Ete{\zidgetL/qfii 2}

Another List:
[apple, banana, pear]

Key-value pairs

Bill To: *userid001

address:
street: !lstr 123 Main street |YPes auto-detected

zip: "98765"
9\ disambigu with single or double quotes

HeEsE & or with explicit typing

This text will
be folded

anotherNote: |
Lines returns
will be kep

ser-defined local data types

myBook: !bookClass { title: "My First Book", pages: 200 }

REST

e Representational State Transfer

e software architecture style for creating scalable web
services

e invented by Roy Fielding, author of HTTP 1.1

e resources identified by URIs

e representations of resources as JSON, XML or other
formats

e uses HTTP methods GET, PUT, DELETE and POST
for manipulating resources

e verbs (GET, PUT,...) manipulate nouns (resources)

e not every service using HTTP and JSON is RESTful

Web API Descriptions

e API described in human natural language
o e.g. 'Image can be changed by HT'TP PUT request
to /image/{imagelD} with the image in request body”

e \WSDL 2.0 defined in 2007, but never used
e OpenAPI since 2016

o machine-processable description of HTTP interfaces
o a form of IDL (Interface Description Language)
o written in YAML language, which is a more

human-readable superset of JSON
o can describe both RPC-like and RESTful APls

OpenAPI

“machine-readable interface files for
describing, producing, consuming, and
visualizing RESTful web services”

developed since 2010 as Swagger,

renamed to OpenAPI in 2016

version 3.0.0 released in 2017

latest version 3.1 released in February 2021
API description in file openapi.yml

tool OpenAPI Generator can generate client
stubs in about 40 programming languages

VoOo~NAATULTDEWN R

openapi: 3.0.2

info:
title: My awesome API
version: 1.0.0

description: Just an example of OpenAPI description

servers:
- url: 'https://my.example.org/api/v1'
components:
schemas:
User:
type: object
properties:
id: { type: integer }
firstName: { type: string }
lastName: { type: string }

responses:
UserResponse:
description: returns a User
content:
application/json:
schema:
Sref: "#/components/schemas/User"
parameters:
id:
name: id
description: numeric 1id
schema:
type: integer
in: query
required: true
paths:
' /getUser':
get:

operationId: "getUser"
summary: "returns a User for a given id"
parameters:

- $ref: '#/components/parameters/id’
responses:

'200':

$Sref: '#/components/responses/UserResponse’

Java client library generated
by OpenAPI Generator

/**
returns a User for a given 1id

@return User
@throws ApiException If fail to call the API, e.g. server error
I
public User getUser(Integer id) throws ApiException {
ApiResponse<User> resp = getUserWithHttpInfo(id);
return resp.getData();

*
*
* @param 1id numeric id (required)
*
%

Python client library generated
by OpenAPI Generator

class DefaultApi(object):

def init (self, api client=None):
if api client is None:
api client = ApiClient()
self.api client = api client

def get user(self, id, **kwargs): # noga: E501

AJAX

Asynchronous JavaScript And XML

(Ajax was a Greek mythological hero)

AJAX does not need XML, uses JSON mostly
enabled by introduction of XMLHttpRequest
JavaScript object to web browsers around the
year 2006

asynchronous request to web server

e enables calling REST services from JavaScript

CORS

e JavaScript in browsers has same-origin policy

O

O

limits requests to the same origin - triple (scheme, host,
port)
can be circumvented using CORS

e CORS (Cross-origin resource sharing)

O
O

uses HTTP headers for allowing cross-origin requests
client sends header Origin: with URL of calling web
page

server responds with
Access-Control-Allow-0rigin: header with the
same URL or * for any

requests changing data (POST, PUT, ...) must do a
preflight request using OPTIONS method

the Vary : header should mark CORS headers that
cause responses not to be cached by proxies

nn

SPA - Single Page Applications

written in JavaScript

running in browsers

transferring data using AJAX calls

have special security considerations

o cannot keep secrets (may be reverse-engineered)
o special types of attacks (XSS, XSRF)

21

Mash ups

e combine data from various sources
e typically a Google map with some geospatial

data
o ships - http://www.marinetraffic.com/
o aircrafts - http://www.flightradar24.com/

L ¢ € < ©o

Q| >@|lv | &

Mash-up of Google Maps with ships data

Live Map Explore v

MarineTraffic Community v Pricing v
[A406 | . . 4
[A40] SOUth&Wﬁ‘y Khotea &Miod Adriat 2 Yasm ne/j Bulker Bee 2(;che v = Coo'/
rn I
LOFUY"A Armador li j‘/\ndromeda C‘jj‘”%“néﬂagxpress Nataly ‘ e N50°23'02.59 RO/
[Chelsea Marant Adiante J Star Pisces 0 Aromo o5qr
ounslow L\ Lady Clara <% Sand Fulmar A 7 St Solene IR
Dartford Yuan'Shun Hai Nita @ Sikinos szc London 4Karvounls (50,3841, 002.9931)
AiS] | ingston > Shi2 Viking Amber Tempest £ Reimerswaal G 5 ione .+ Dc
R - MTRATS Gy sia AOStarAnd Ganter @@ Fure Nord e - _skgng':da'amg ‘
Croydon rklow Flair o e capy Margate e qutrot 3 {v Kwintebank ¥ ASprouda Grand
@ . A [Whitstable BrondstaraaRicreienC & &3 <¥Elka Aristotle
psom i P~ M2 | Sitting boumf ’ ¥ T ’ C7 Hsl Nassau <3Maersk Penang- = Mrc Lina i Calherme
3 aversham ‘/‘7 Bouee M D W Gion Trader =
(- Sevenoaks Maidstone Canterbury " RcecListon 47 Dole Africa : =
773 \af Pa21) _\ Eems Sun ¢ Wieling
’) Naos Sandettie Ouest -
. Deal East Good g @
Horley Tonbridge j oodwin Lv » Minerva Olympia OosteIA"
Royal Whitfield <7 Emden KerMarie_ = Bouee Dy3 Middelkerke
Tunbridge Ashford itrie Sandettie Lv Bouee Dy2 Magellano 1800
g Goodwln Sw Buoy £J4Jsp R S
Crawley Wells Overdraft ’\utumn Stream 77 Vitosh S %Vertazzano 18
4/ Vitosha Koksijd
Horsham Tenterden (X0 Folkestone £ Y Meuchk \ IRk
E Wy Delft SeawaysQ ‘ Ay Veurne
[A26) Css L% \J Wadi Alkarm aAom SOphIe h\
Ha}j’wz;trds Vame Ly, Elisa Larus Allaaa D @ Catheris
eath
» New RonaA(Smit Stour * Schelde quhway # Epave Etoile, ;% §iCma,Com Fort Royal <
Burgess Hill Rye Sar 111232538 ¥ Arklow Ciiff | azy Otter ¢ lle De Batz)
Rnli Lifeboat B 900 A> P =ic arais B3 4 infinity >) Vis 205510490
’ [? Star Harmony (] Truffaldino
ewes >
Hailsham » La Galere
¥ HasJ“"f'SSenIac Jack Rx1066 ’Hyde Rark Tai Shin | [Ns]
/orthing g _SJ,@ﬁ[gIghter‘ A27] £* Amberland & OL‘ o 8 Ver Lyp GNGoperingeypry [
A 16
Windcat/10 ¥ Mfv Havana Nn749 ;,"“ “* Breb Courageous Q Maersk Newbury \) S
Scarlet B © Sand Heron EastboiTe g - < Qgndp H2
: y imereux |
= Sa;;;n Talisman Nn793 Po ‘j"“Maersk Kaya ‘ Torm Signe . [~ Saint- Or\eY'kmg Orakar (425 SR Em/
2 W ggﬁ Endeavour BOU'”ahArcheMer T A26. o Smimoffazebrouck ~ Bailleul FANE
ardiff B = | “» Memphis v\,\J A
Beaver W Cote Dalbatre <z Slahif 5 QMercator & Captain Lyristis e) Kansas City
Willem Van Oranje Ay ‘ <
) Pascal l{jaersk HeNrrera : Aire-suiNaFreyja
7 Smaraad ‘ergoyer Nord Ouest est e ' Hardel
ros Stream Joale % Elisabeth J v g Vergoyer Est s Hardelot S
6 LSMommg Clalre ’L"Q Rosenrot = g| 27 Johannes aCma Cgm St Exupery | <My Way O
Harmome = Neeltie 7 #4 Josyl Syljo [
ing Star Fr Z2Sch 81 Carohen = Brickfielder Le Touquet-Paris-Plage Béthun@APiSg.. (g f:A
-t £ ZRex Oldendorff 7 (Qat. ~ / Condor Valparaiso Fruges [Sat-Ais]
N Toros M 5 [Sat-Ais) 3-7Martha A Bruay-la-Buissic [N47 |
£ > < Maersk Hartford Bouee Vergoyer Sud O Montreui L5 wsstere_ (AR
ea Greenwich Lv pMSC’Uma [Sat-Ais] A -
3 . S Berck Liévin Hénin-Beau

€I Dramathaiie | aadar

Authentication and Authorization
in Web Services

e an important problem in web services is to
know who is who (authentication) and what
to allow them to do (authorization)

e the next section talks about
o federated identity

SAML

OAuth 2

OpenlD

OpenlID Connect

JSON Web Tokens

O O O O O

Federated identity

e many authentication mechanisms were

developed for the web

o username+password (hard to remember)
o X509 digital certificate (complicated to get)
o digest, Kerberos etc. (not much support in browsers)

e users forget passwords to rarely used accounts
e in federated identity, account from one
organisation can be reused at others

e protocols and identity providers:
o SAML - in academia, Microsoft O365, Google Apps
OAuth - Google, Facebook, Twitter, ...

O
o OpenlD - obsolete
o OpenlD Connect - mix of OpenlD and OAuth

MUNI Unified Login

e OpenlD Connect protocol for internal MUNI
services

e SAML protocol for external services in
federations eduld.cz and eduGAIN

e see https://it.muni.cz/en/services/jednotne-prih
laseni-na-muni -

Cz

Primary password

https://it.muni.cz/en/services/jednotne-prihlaseni-na-muni
https://it.muni.cz/en/services/jednotne-prihlaseni-na-muni

SAML

Security Assertion Markup Language
introduced in 2001

provides web browser single sign-on
SAML document is XML containing user
attributes signed by an identity provider

trust between identity providers (IdP) and
service providers (SP) is established using
federations

a federation publishes list of trusted IdPs and
SPs complying with federation’s policy

WAYF - Where Are Your From? service / DS -
Discovery Service

Where Are You From?

CJCD [https://www.wayf.ex/ |

Select your Home Organization

 Hospial G Y

WAYF
Service

ser
3
User's 4
Home Org
University B Login Page Welcome at Resource
<'.'l¢ | https://www.uni-b.ex/ | <,‘3LJ‘) | https://www.resource.ex/ |
Authenticate yourself You successfully logged in.
User name Available Content:
Medical Training 1 &
Password [] Medical Training 2
Live Stream 3
[Cancel I | ok kl

OAuth 2.0 Authorization Framework

e defined in RFC 6749 in the year 2012

e used by Google, Facebook, Microsoft,
Twitter, LinkedIn, GitHub, ...

e designed for delegating limited access to
third parties, but used for authentication too

K3 Login with Facebook
G+ Login with Google Login with Instagram

() Login with GitHub In Login with LinkedIn

Y Login with Twitter

om Login with Microsoft

OAuth 2 - involved parties

® resource owner - the user

® resource server
o maintains user’s data
o provides API for operations on the data
o checks access token for permissions for sets of
operations called scopes

e client - application that wants to use the API
on user’s behalf

e authorization server
o registers all others - the user, the client and the RS
o authenticates the user, asks which scopes to allow
o releases an access token to the client

OAuth 2 Features

e not limited to web apps, also for mobile,
SmartTV, desktop, embedded
e various grant flows depending on abilities to

store secrets and user interface

o if you log into Youtube app in your SmartTV using QR
code, that's OAuth’s “Device Authorization Grant’

o if you log in your mobile app into Google, that's
“Authorization Code Grant with Proof Key for Code
Exchange”

o if you log into a server-side web app in your browser,
that's “Authorization Code Grant” (on the next slide)

browser

®

\/

@ client_id + desired scopes

access_code @

client

client _id
client_secret

@ access_code + client_secret

>

O, O

authenticate

select scopes

<

\/

Authorization Server
O authorization endpoint

access_token @

@ access_token + API request

~ () token endpoint

introspection endpoint

VRN

9

T

9, O

scopes

access token

-

A

Resource Server

> API endpoint

API response@

OpenlD versions 1 and 2

obsolete

iIntroduced the idea of decentralized
authentication protocol

users were identified by URLs

anybody could run an identity provider
problem of trust

only large identity providers like Google were
trusted by service providers

OpeniD Connect (OIDC)

e promoted as third version of OpenlD

e authentication layer built on top of OAuth 2.0

e OAuth 2.0 is for authorization, it does not
define API for obtaining user data

e OIDC defines:

o Userinfo API for obtaining user data in JSON

o scopes for the API - openid, profile, email, address,
phone

o claims - data about the user (e.g. family _name)

o well-known URI (RFC 8615) for discovery
/ .well-known/openid-configuration

Example of Userinfo response

"sub": "3e65bd2aa4c818bd3579023939b546b69e1@einfra.cesnet.cz",
"name": "Josef Novak",
"preferred_username": "pepa",
"given_name": "Josef",
"family_name": "Novak",
"nickname": "Pepan",
"profile": "https://www.muni.cz/en/people/3988",
"picture": "https://secure.gravatar.com/avatar/f320c89e39d15da1608c8fc31210b8ca",
"website": "http://pepovo.wordpress.com/",
"gender": "male",
"zoneinfo": "Europe/Prague",
"locale": "cs-CZ",
"updated_at": "1508428216",
"birthdate": "1975-01-01",
"email": "pepa@gmail.com",
"email_verified": true,
"phone_number": "+420 603123456",
"phone_number_verified": true,
"address": {
"street_address": "Severni 1",
"locality": "Dolni Lhota",
"postal_code": "111 00",
"country": "Czech Republic"

JWT - JSON Web Tokens

e convenient for small digitally signed pieces
of structured data

e TLS does not provide signatures of
transported data

e JWT is often used for OAuth access tokens

e RFC 7515 - JSON Web Signature

o <header>.<payload>.<signature>
o all 3 parts are base64-encoded, safe for URLs
o <header> is JSON metadata identifying signing key

e RFC 7519 - JSON Web Tokens
o JWS with JSON payload

JSON Web Token example
https://jwt.io/

Encoded PASTE A TOKEN HERE Decoded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

eyJraWQiOiJyc2ExIiwiYWxnIjoiUIMyNTYifQ.e

yJzdWIiOiJtYWt1YiIsImlzcyI6Imh@dHBzOlwvX {”kd" —
5 e PR - 3 [

C9teS51eGFtcGx1Lm9yZTwvIiwiZXhwIjoxNTY2M "alg": "RS256"

zAyOTc4LCJpYXQi0jETINjYzMDISMTgsImpOaSI6I }

jZhYzA3M2E2LTUWOTAtNDKkYZS1hMmYzLTIOZjQwN
ZEZYWRjNCJ9.GvVyT_6YOKdjVk5702sWUn3KY jtK
DOR8TBDeTemn_3B0V2800D2mUEB]1sUBxe3LOuUHCDb

PAYLOAD: DATA

_zS6tmGB2I- "sub": "makub",

G_sDDbFkaaHoee6V8r rRBDOpgMNTorEdb75n3BrX el v g
sYFQ7IUKa- "iat": 1566302918,

1JKx9fm6 tHE1AQaksXoK1AoA4FCvZ5V8RBDgS - }“jﬁf:“%0W3%—%9&4%eﬂ2ﬁ—mfw7wa®4”
cY9h5ixfZU4ggOxBZayo_hGcGz6HBtes9qq2PASV

WwDhDAGZpdOWuLB44s15CWuLQIfFzHUEgQG2tsG- VERIFY SIGNATURE

k8FOnfaNUirWiBpsrO0d96EGVGkxgBrPVOpeD4A_D
AN4gHKm3fPd3034vPemIZ_WtTxV1TarRBYX8fSan
7x5ZBxLP-s9rsV8g

RSASHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

https://jwt.io/

JWKS - JSON Web Key Set

e JSON-formatted web document containing
public parts of cryptographic keys

e its URL can be in JWT header in jku claim

e its URL can be in OIDC’s metadata at

/ .well-known/openid-configuration in
jwks_uri claim

{
"keys": [
{
"KEy™: ™RSA";
"e": "AQAB",
“Kig%: “rsal™;
“mlg™: “RS525G"

"“n": "mho5h 1z6USUUazQaVT3PHloIk Ljs2vZl RAaitkXDx6agpllkGpS44eY
¥
]
}

That’s it

Thank you for your attention

