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Overview - Lab

• Goal: Learn how to use basic tools

• Discuss false positives / false negatives

• Part I – Github Actions

• Part II - Tools

– Check C/C++ code with with CppCheck, compiler warnings, VS 

PREFast

– Check Java code with FindBugs
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Disclaimer (Part I)

• The slides for this seminar (and part of the lecture) are based on the 

lecture for PV080. 

– there will be some pv080 on screenshots

– we have more work than in PV080

• If you have already been absolved this course, try to enjoy it again ☺

and try to do extra tasks

PA193 | LABS | Static checking3



https://crocs.fi.muni.cz @CRoCS_MUNI

Idea of the seminar

• Prepare repo with vulnerable code 

– IS->buggycode.zip – Part I and II

– IS->crypto-java.zip  – Part II, but you can try also with GitHub

• Part I: enable automatic static analysis via GitHub Actions

– Several providers of analysis environment (custom or standard tools)

– Trigger by commit, investigate warnings/errors found

– Warning: in Code Scanning Actions there may be glitches, UI bugs and tool failures

• Part 2: Standalone Tools

• Fix it, review again
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CODE SCANNING WITH GITHUB + 

ACTIONS + CODACY

Basic analysis of C/C++ source code with various tools
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Steps

1. Create repo on GitHub

2. Enable code analysis

3. Clone repo locally

4. Insert code with vulnerability, commit and push

5. Investigate results of analysis

6. Fix selected issue, rerun analysis

7. Repeat from step 5.
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Create repo on GitHub

• Online at github.com

• Make repo public

– GitHub Actions are free only for public ones

• Add readme, .gitignore, license

– Generally good practice

• For simplicity, don’t mix languages

– Put code of single lang in repo (e.g, c++)

– Makes automatic analysis more difficult
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Enable code scanning actions

• Online at github.com

• Github→Repo→Security→Set up code scanning 

• Select Codacy Security Scan (scroll down in offered scans)

– ‘Set up this workflow’ button
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Commit configuration file for Codacy scan
• No changes required to codacy_analysis.yml

• Start commit →Commit new file 

• Can be found at /.github/workflows/ codacy_analysis.yml for later edits
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Prepare repo content 

• Locally on your PC

• Clone repository on your PC

– GitHub Desktop File→Clone

– git checkout your_repository.git

• Copy example buggy code into 

your repo and commit

– IS → Study materials, buggycode.zip

– Commit new files, push to repo 

(Push origin)
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Analyze results I.

• Observe scheduled, running and finished 

actions

• Online at github.com

• Github→Repo→Actions

• Re-run jobs if desired

– Done on same commit!

– Useful if Action failed due to external service
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Analyze results II.

• Online at github.com

• Github→Repo→Security

– When actions are finished

• Code scanning alerts

– Sorted by tool (e.g., Cppcheck)

• Shown similarly to Issues

– Open, Closed

– Can be filtered (severity…)

– But visible only to repo developers 

PA193 | LABS | Static checking15



https://crocs.fi.muni.cz @CRoCS_MUNI

Notes

• Standard Issues are used to report bugs or ask for / plan 

enhancements and new features (usually opened manually)

• Code scanning alerts are similarly treated, but opened automatically, 

visible only to developers

• Results from tool(s) are transformed to standardized ‘OASIS Static 

Analysis Results Interchange Format (SARIF) TC’, which GitHub can 

process, and display issues based on it
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Analyze results III.

• Bug triage

– atm, bug properties cannot be changed

– (expect UI change in future)

• Can be dismissed (=> will not be fixed)

– E.g., if False positive, not relevant…

– Severity is set by original tools

• Expect unification in future

– Dismiss only bugs you are sure about!
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Fix bug(s)

• Locate reported bug in source code
– (Note: for the moment, bug preview at Github is not working)

– Use file and line number to locate (e.g., fail.cpp#L7 => line 7 in fail.cpp)

• Fix bug
– E.g., Static[5]; → Static[101];  

– (Note: not proper fix, check length instead)

• Commit, Push
– Will trigger analysis again

• Fixed issues are now in ‘Closed’ category
– Introducing and fixing commit is visible in history
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SCANNING OF PYTHON CODE

Scanning of python source code with
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Setup Python actions on repo

• Find an action that will find some security issues in the uploaded 

code. 

• Which tool have you used?

• Which issues have you found?

• If a tool does not work then use another one!
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Notes

• X scan requires no special configuration (same as Codacy)

• Provides a good explanation of a bug
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CODE SCANNING WITH GITHUB + 

ACTIONS + CODEQL

Bit more advanced setup, CodeQL code analysis, configurable build steps 
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CodeQL basics

• Your source code → CodeQL code → rules executed on that canonical code
– Adding support for new language (e.g., Go) => just convert Go source code to CodeQL

canonical form and then use all already existing rules

• CodeQL uses own language to write analysis rules
– Many existing security rules are already written, you don’t need to learn this language or 

write own rules to use it

• CodeQL is integrated in GitHub Actions or can be run for external CI
– We will use integrated option

– https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-
errors-in-your-code/enabling-code-scanning-for-a-repository

• Note: difference between dedicated tool (e.g., cppcheck) and CodeQL
– Single tool for single language – detection rules must be written again for new lang

– CodeQL – detection rules are written for canonical code, new lang requires only to write 
conversion between lang code and canonical code
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Setup CodeQL actions on repository

• Create new repository (e.g., pv080_test_python), clone locally

• Enable code scanning actions

– Pick CodeQL (instead of Codacy)

• Check codeql-analysis.yml before commit

– Modify set of target languages 

• language: [ 'cpp']

• Copy buggy code to repo, push 
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Fixing build for CodeQL

• CodeQL Action may fail with:

• Reason

– Analysis for some languages works on the compiled code/bytecode (e.g., 

Java)

– Static analysis generally runs on unfinished code, but not always 

– One shall not commit broken code to repo anyway

• Fix: tell CodeQL how to build
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Fixing build for CodeQL I.

• GitHub CodeQL tries to compile your code
– But how it knows how to compile your project?

• Autobuild feature is only heuristic (=> can be wrong, can fail)
– https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-

and-errors-in-your-code/configuring-the-codeql-workflow-for-compiled-languages

– Depends on CI operating system

– Search for .sln or .vcxproj (MS Visual Studio), then call MSBuild.exe

– Search for build.bat, build.cmd, and build.exe, then run it

– Search for Makefile, then call make 

– Starts in repo root, then try in subdirectories… 

• Tip: Start with simplest example, make it work, then make more 
complicated
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Fixing build for CodeQL II.

• The solution depends on build system for your project
– Make, gradle, ant, maven…

– We will only discuss simple direct build with g++ and makefile

• Option 1: Makefile into repo root (g++ fail.cpp)
– Feel free to use improved makefile scripts

– Generally better solution than option 2

• Option 2: Direct specification in codeql-analysis.yml
– Disable autobuild by commenting it out with #

– Insert conditional statement based on language

• Example here for cpp and java 

• Python is left with autobuild

– More flexibility in configuration, more changes to scripts

main:

g++ ./fail.cpp
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Notes

• The goal of this exercise is to show that the configuration can be hard. 

• In this seminar finding the issues is not important with CodeQL.

• More at code review seminar.
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CHECKING SECURITY OF 

DEPENDENCIES GITHUB + DEPENDABOT

Setup Action to observe new vulnerabilities in your dependencies, notify you and even 

propose automatic patch
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Enable dependabot

• Enable Dependabot alerts

– You will receive notification about 

vulnerable dependency

• Enable Dependabot security 

updates

– You will receive automatic pull requests 

fixing vulnerable dependency

– Always analyze automatic pull requests 

for correctness
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Notes

• Dependabot is well established feature of GitHub

• GitHub checks for vulnerabilities in major libraries (dependencies) and 

notify you if tour repo use it

• If you enable it for a project without dependencies then not much will 

happen. 

• You can try to create a repository with a pom file with a vulnerable 

version of the library, but that is extra task. 
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RUNNING TOOL(S) LOCALLY

Run tools (e.g., cppcheck) locally without Github Actions. Suitable for projects with 

proprietary code, troubleshooting, execution with non-standard parameters etc.
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Cppcheck for C++ files

• For small files, you may try cppcheck online

– https://cppcheck.sourceforge.net/demo/

– Paste fail.cpp into browser and Check

– Compare with errors as reported by Codacy

• Run cppcheck from command line

– Get latest release

• https://github.com/danmar/cppcheck/releases

– Run cppcheck --enable=all fail.cpp 

• Run cppcheck via GUI

– Allows for analysis of folders, sorting by severity…
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CPPCheck + OpenSSL

• First run it against buggy code

• Second run against some old OpenSSL0.9.xx (around 1998)

– https://packetstormsecurity.com/crypt/SSL/openssl/page5/

– Or a bit newer: https://www.openssl.org/source/old/0.9.x/

– It might take much time.

– What are the bugs? 

• Run against newest OpenSSL

– ftp://ftp.openssl.org/source/

– Why not completely clean yet?
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Hearthbleed bug

• OpenSSL 1.0.1 through 1.0.1f

• Download https://www.openssl.org/source/openssl-1.0.1e.tar.gz

• Locate function dtls1_process_heartbeat(SSL *s) 

– Ssl\t1_lib.c

• Will your static analyzers find anything?

– Don’t be sad, even Coverity didn’t before the bug was exposed

– http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-

analysis.html
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PREfast - Microsoft static analysis tool
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PREfast – example buggycode
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PREfast – what can be detected

• Potential buffer overflows

• Memory leaks, uninitialized variables

• Excessive stack usage

• Resources – release of locks...

• Incorrect usage of selected functions

• List of all code analysis warnings http://msdn.microsoft.com/en-

us/library/a5b9aa09.aspx
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PREfast settings

• http://msdn.microsoft.com/en-us/library/ms182025.aspx
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FindBugs/FindSecurityBugs - Java

• Download Eclipse

• Download FindBugs http://findbugs.sourceforge.net/ as a plugin to 

eclipse

• Download FindSecurityBugs (plugin to FindBugs plugin)

– https://find-sec-bugs.github.io/

• Run FindBugs in Eclipse

– Ask me for help
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FindBugs/FindSecurityBugs - Java

• Note: you need compiled *.jar for analysis

– And source code for quick display of problems ☺

– import com.google.common.io.BaseEncoding;

– import org.slf4j.Logger;

– import org.slf4j.LoggerFactory;

• Extract content of IS → crypto-java.zip

• Run FindBugs

• Ask me in case of issues ☺
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Discussion

• Can you find false positive?

• Every student: name and describe the most severe bug you found
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Final Questions

• What was the most severe issue that you found?

• What tool was the best for you?

• What are differences between the tools that you used? 

• What more would you like from your static tools?
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TROUBLESHOOTING

Some hints on common issues
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Troubleshooting 

• Analysis is not finished yet
– Wait an hour, try to make another bogus commit (update file)

• Start from small working examples, then extend to larger project
– E.g., simple main.java, only later large java project via ant

• Analyze failed to start for specific language 
– GitHub Actions usually requires code to be compilable

• Analysis for some languages works on the compiled code/bytecode (e.g., Java)

• (static analysis runs on unfinished code, but one shall not commit broken code to repo)

– Github will invoke autobuild feature

• Tries to build various languages as defined here

– https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-
code/configuring-the-codeql-workflow-for-compiled-languages

• Paths case sensitivity
– Linux is case-sensitive for path names while Windows isn’t

• /java/ and /Java/ are the same on Windows, but not on Linux

• Clicking on log of ‘Perform Code QL Analysis’ shows nothing
– Likely GitHub bug, click left on the Analyze (language), then again on ‘Perform Code QL Analysis’ 

• Makefile requires tabs, not spaces
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Some tips 

• Setup scanning tools at the beginning of new project

– And make sure all bugs are always fixed (similar to “compile cleanly” mantra)

• Look at the text logs produced by actions (click on named Action)

– What tool was executed, what configuration…
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NO HOMEWORK ASSIGNMENT THIS 

WEEK ☺
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CHECK-OUT
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Checkout

• Which of the seminar parts you enjoyed most? 

• Write three items you liked (ideally inserted as single word each)

• Write to sli.do when displayed
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THANK YOU FOR COMING, SEE YOU 

NEXT WEEK
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