
https://crocs.fi.muni.cz @CRoCS_MUNI

PA193 - Secure coding principles and

practices

LAB: Static analysis of source code

Łukasz Chmielewski chmiel@fi.muni.cz (email me with your questions/feedback)

Centre for Research on Cryptography and Security, Masaryk University

mailto:chmiel@fi.muni.cz

https://crocs.fi.muni.cz @CRoCS_MUNI

Overview - Lab

• Goal: Learn how to use basic tools

• Discuss false positives / false negatives

• Part I – Github Actions

• Part II - Tools

– Check C/C++ code with with CppCheck, compiler warnings, VS

PREFast

– Check Java code with FindBugs

PA193 | LABS | Static checking2

https://crocs.fi.muni.cz @CRoCS_MUNI

Disclaimer (Part I)

• The slides for this seminar (and part of the lecture) are based on the

lecture for PV080.

– there will be some pv080 on screenshots

– we have more work than in PV080

• If you have already been absolved this course, try to enjoy it again ☺

and try to do extra tasks

PA193 | LABS | Static checking3

https://crocs.fi.muni.cz @CRoCS_MUNI

Idea of the seminar

• Prepare repo with vulnerable code

– IS->buggycode.zip – Part I and II

– IS->crypto-java.zip – Part II, but you can try also with GitHub

• Part I: enable automatic static analysis via GitHub Actions

– Several providers of analysis environment (custom or standard tools)

– Trigger by commit, investigate warnings/errors found

– Warning: in Code Scanning Actions there may be glitches, UI bugs and tool failures

• Part 2: Standalone Tools

• Fix it, review again

PA193 | LABS | Static checking6

https://crocs.fi.muni.cz @CRoCS_MUNI

CODE SCANNING WITH GITHUB +

ACTIONS + CODACY

Basic analysis of C/C++ source code with various tools

PA193 | LABS | Static checking7

https://crocs.fi.muni.cz @CRoCS_MUNI

Steps

1. Create repo on GitHub

2. Enable code analysis

3. Clone repo locally

4. Insert code with vulnerability, commit and push

5. Investigate results of analysis

6. Fix selected issue, rerun analysis

7. Repeat from step 5.

PA193 | LABS | Static checking8

https://crocs.fi.muni.cz @CRoCS_MUNI

Create repo on GitHub

• Online at github.com

• Make repo public

– GitHub Actions are free only for public ones

• Add readme, .gitignore, license

– Generally good practice

• For simplicity, don’t mix languages

– Put code of single lang in repo (e.g, c++)

– Makes automatic analysis more difficult

PA193 | LABS | Static checking10

https://crocs.fi.muni.cz @CRoCS_MUNI

Enable code scanning actions

• Online at github.com

• Github→Repo→Security→Set up code scanning

• Select Codacy Security Scan (scroll down in offered scans)

– ‘Set up this workflow’ button

PA193 | LABS | Static checking11

https://crocs.fi.muni.cz @CRoCS_MUNI

Commit configuration file for Codacy scan
• No changes required to codacy_analysis.yml

• Start commit →Commit new file

• Can be found at /.github/workflows/ codacy_analysis.yml for later edits

PA193 | LABS | Static checking12

https://crocs.fi.muni.cz @CRoCS_MUNI

Prepare repo content

• Locally on your PC

• Clone repository on your PC

– GitHub Desktop File→Clone

– git checkout your_repository.git

• Copy example buggy code into

your repo and commit

– IS → Study materials, buggycode.zip

– Commit new files, push to repo

(Push origin)

PA193 | LABS | Static checking13

https://crocs.fi.muni.cz @CRoCS_MUNI

Analyze results I.

• Observe scheduled, running and finished

actions

• Online at github.com

• Github→Repo→Actions

• Re-run jobs if desired

– Done on same commit!

– Useful if Action failed due to external service

PA193 | LABS | Static checking14

https://crocs.fi.muni.cz @CRoCS_MUNI

Analyze results II.

• Online at github.com

• Github→Repo→Security

– When actions are finished

• Code scanning alerts

– Sorted by tool (e.g., Cppcheck)

• Shown similarly to Issues

– Open, Closed

– Can be filtered (severity…)

– But visible only to repo developers

PA193 | LABS | Static checking15

https://crocs.fi.muni.cz @CRoCS_MUNI

Notes

• Standard Issues are used to report bugs or ask for / plan

enhancements and new features (usually opened manually)

• Code scanning alerts are similarly treated, but opened automatically,

visible only to developers

• Results from tool(s) are transformed to standardized ‘OASIS Static

Analysis Results Interchange Format (SARIF) TC’, which GitHub can

process, and display issues based on it

PA193 | LABS | Static checking17

https://crocs.fi.muni.cz @CRoCS_MUNI

Analyze results III.

• Bug triage

– atm, bug properties cannot be changed

– (expect UI change in future)

• Can be dismissed (=> will not be fixed)

– E.g., if False positive, not relevant…

– Severity is set by original tools

• Expect unification in future

– Dismiss only bugs you are sure about!

PA193 | LABS | Static checking18

https://crocs.fi.muni.cz @CRoCS_MUNI

Fix bug(s)

• Locate reported bug in source code
– (Note: for the moment, bug preview at Github is not working)

– Use file and line number to locate (e.g., fail.cpp#L7 => line 7 in fail.cpp)

• Fix bug
– E.g., Static[5]; → Static[101];

– (Note: not proper fix, check length instead)

• Commit, Push
– Will trigger analysis again

• Fixed issues are now in ‘Closed’ category
– Introducing and fixing commit is visible in history

PA193 | LABS | Static checking19

https://crocs.fi.muni.cz @CRoCS_MUNI

SCANNING OF PYTHON CODE

Scanning of python source code with

PA193 | LABS | Static checking20

https://crocs.fi.muni.cz @CRoCS_MUNI

Setup Python actions on repo

• Find an action that will find some security issues in the uploaded

code.

• Which tool have you used?

• Which issues have you found?

• If a tool does not work then use another one!

PA193 | LABS | Static checking21

https://crocs.fi.muni.cz @CRoCS_MUNI

Notes

• X scan requires no special configuration (same as Codacy)

• Provides a good explanation of a bug

PA193 | LABS | Static checking22

https://crocs.fi.muni.cz @CRoCS_MUNI

CODE SCANNING WITH GITHUB +

ACTIONS + CODEQL

Bit more advanced setup, CodeQL code analysis, configurable build steps

PA193 | LABS | Static checking23

https://crocs.fi.muni.cz @CRoCS_MUNI

CodeQL basics

• Your source code → CodeQL code → rules executed on that canonical code
– Adding support for new language (e.g., Go) => just convert Go source code to CodeQL

canonical form and then use all already existing rules

• CodeQL uses own language to write analysis rules
– Many existing security rules are already written, you don’t need to learn this language or

write own rules to use it

• CodeQL is integrated in GitHub Actions or can be run for external CI
– We will use integrated option

– https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-
errors-in-your-code/enabling-code-scanning-for-a-repository

• Note: difference between dedicated tool (e.g., cppcheck) and CodeQL
– Single tool for single language – detection rules must be written again for new lang

– CodeQL – detection rules are written for canonical code, new lang requires only to write
conversion between lang code and canonical code

PA193 | LABS | Static checking24

https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/enabling-code-scanning-for-a-repository
https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/enabling-code-scanning-for-a-repository

https://crocs.fi.muni.cz @CRoCS_MUNI

Setup CodeQL actions on repository

• Create new repository (e.g., pv080_test_python), clone locally

• Enable code scanning actions

– Pick CodeQL (instead of Codacy)

• Check codeql-analysis.yml before commit

– Modify set of target languages

• language: ['cpp']

• Copy buggy code to repo, push

25 PA193 | LABS | Static checking

https://crocs.fi.muni.cz @CRoCS_MUNI

Fixing build for CodeQL

• CodeQL Action may fail with:

• Reason

– Analysis for some languages works on the compiled code/bytecode (e.g.,

Java)

– Static analysis generally runs on unfinished code, but not always

– One shall not commit broken code to repo anyway

• Fix: tell CodeQL how to build

PA193 | LABS | Static checking26

https://crocs.fi.muni.cz @CRoCS_MUNI

Fixing build for CodeQL I.

• GitHub CodeQL tries to compile your code
– But how it knows how to compile your project?

• Autobuild feature is only heuristic (=> can be wrong, can fail)
– https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-

and-errors-in-your-code/configuring-the-codeql-workflow-for-compiled-languages

– Depends on CI operating system

– Search for .sln or .vcxproj (MS Visual Studio), then call MSBuild.exe

– Search for build.bat, build.cmd, and build.exe, then run it

– Search for Makefile, then call make

– Starts in repo root, then try in subdirectories…

• Tip: Start with simplest example, make it work, then make more
complicated

PA193 | LABS | Static checking27

https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-the-codeql-workflow-for-compiled-languages
https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-the-codeql-workflow-for-compiled-languages

https://crocs.fi.muni.cz @CRoCS_MUNI

Fixing build for CodeQL II.

• The solution depends on build system for your project
– Make, gradle, ant, maven…

– We will only discuss simple direct build with g++ and makefile

• Option 1: Makefile into repo root (g++ fail.cpp)
– Feel free to use improved makefile scripts

– Generally better solution than option 2

• Option 2: Direct specification in codeql-analysis.yml
– Disable autobuild by commenting it out with #

– Insert conditional statement based on language

• Example here for cpp and java

• Python is left with autobuild

– More flexibility in configuration, more changes to scripts

main:

g++ ./fail.cpp

PA193 | LABS | Static checking28

https://crocs.fi.muni.cz @CRoCS_MUNI

Notes

• The goal of this exercise is to show that the configuration can be hard.

• In this seminar finding the issues is not important with CodeQL.

• More at code review seminar.

PA193 | LABS | Static checking29

https://crocs.fi.muni.cz @CRoCS_MUNI

CHECKING SECURITY OF

DEPENDENCIES GITHUB + DEPENDABOT

Setup Action to observe new vulnerabilities in your dependencies, notify you and even

propose automatic patch

PA193 | LABS | Static checking30

https://crocs.fi.muni.cz @CRoCS_MUNI

Enable dependabot

• Enable Dependabot alerts

– You will receive notification about

vulnerable dependency

• Enable Dependabot security

updates

– You will receive automatic pull requests

fixing vulnerable dependency

– Always analyze automatic pull requests

for correctness

PA193 | LABS | Static checking31

https://crocs.fi.muni.cz @CRoCS_MUNI

Notes

• Dependabot is well established feature of GitHub

• GitHub checks for vulnerabilities in major libraries (dependencies) and

notify you if tour repo use it

• If you enable it for a project without dependencies then not much will

happen.

• You can try to create a repository with a pom file with a vulnerable

version of the library, but that is extra task.

PA193 | LABS | Static checking32

https://crocs.fi.muni.cz @CRoCS_MUNI

RUNNING TOOL(S) LOCALLY

Run tools (e.g., cppcheck) locally without Github Actions. Suitable for projects with

proprietary code, troubleshooting, execution with non-standard parameters etc.

PA193 | LABS | Static checking33

https://crocs.fi.muni.cz @CRoCS_MUNI

Cppcheck for C++ files

• For small files, you may try cppcheck online

– https://cppcheck.sourceforge.net/demo/

– Paste fail.cpp into browser and Check

– Compare with errors as reported by Codacy

• Run cppcheck from command line

– Get latest release

• https://github.com/danmar/cppcheck/releases

– Run cppcheck --enable=all fail.cpp

• Run cppcheck via GUI

– Allows for analysis of folders, sorting by severity…

PA193 | LABS | Static checking34

https://cppcheck.sourceforge.net/demo/
https://github.com/danmar/cppcheck/releases

https://crocs.fi.muni.cz @CRoCS_MUNI

CPPCheck + OpenSSL

• First run it against buggy code

• Second run against some old OpenSSL0.9.xx (around 1998)

– https://packetstormsecurity.com/crypt/SSL/openssl/page5/

– Or a bit newer: https://www.openssl.org/source/old/0.9.x/

– It might take much time.

– What are the bugs?

• Run against newest OpenSSL

– ftp://ftp.openssl.org/source/

– Why not completely clean yet?

PA193 | LABS | Static checking35

https://www.openssl.org/source/old/0.9.x/
https://www.openssl.org/source/old/0.9.x/
ftp://ftp.openssl.org/source/

https://crocs.fi.muni.cz @CRoCS_MUNI

Hearthbleed bug

• OpenSSL 1.0.1 through 1.0.1f

• Download https://www.openssl.org/source/openssl-1.0.1e.tar.gz

• Locate function dtls1_process_heartbeat(SSL *s)

– Ssl\t1_lib.c

• Will your static analyzers find anything?

– Don’t be sad, even Coverity didn’t before the bug was exposed

– http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-

analysis.html

PA193 | LABS | Static checking36

https://www.openssl.org/source/openssl-1.0.1e.tar.gz
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html

https://crocs.fi.muni.cz @CRoCS_MUNI

PREfast - Microsoft static analysis tool

PA193 | LABS | Static checking37

https://crocs.fi.muni.cz @CRoCS_MUNI

PREfast – example buggycode

PA193 | LABS | Static checking39

https://crocs.fi.muni.cz @CRoCS_MUNI

PREfast – what can be detected

• Potential buffer overflows

• Memory leaks, uninitialized variables

• Excessive stack usage

• Resources – release of locks...

• Incorrect usage of selected functions

• List of all code analysis warnings http://msdn.microsoft.com/en-

us/library/a5b9aa09.aspx

PA193 | LABS | Static checking40

http://msdn.microsoft.com/en-us/library/a5b9aa09.aspx
http://msdn.microsoft.com/en-us/library/a5b9aa09.aspx

https://crocs.fi.muni.cz @CRoCS_MUNI

PREfast settings

• http://msdn.microsoft.com/en-us/library/ms182025.aspx

PA193 | LABS | Static checking41

http://msdn.microsoft.com/en-us/library/ms182025.aspx

https://crocs.fi.muni.cz @CRoCS_MUNI

FindBugs/FindSecurityBugs - Java

• Download Eclipse

• Download FindBugs http://findbugs.sourceforge.net/ as a plugin to

eclipse

• Download FindSecurityBugs (plugin to FindBugs plugin)

– https://find-sec-bugs.github.io/

• Run FindBugs in Eclipse

– Ask me for help

42 PA193 | LABS | Static checking

http://findbugs.sourceforge.net/
https://find-sec-bugs.github.io/download.htm

https://crocs.fi.muni.cz @CRoCS_MUNI

FindBugs/FindSecurityBugs - Java

• Note: you need compiled *.jar for analysis

– And source code for quick display of problems ☺

– import com.google.common.io.BaseEncoding;

– import org.slf4j.Logger;

– import org.slf4j.LoggerFactory;

• Extract content of IS → crypto-java.zip

• Run FindBugs

• Ask me in case of issues ☺

43 PA193 | LABS | Static checking

https://crocs.fi.muni.cz @CRoCS_MUNI

Discussion

• Can you find false positive?

• Every student: name and describe the most severe bug you found

44 PA193 | LABS | Static checking

https://crocs.fi.muni.cz @CRoCS_MUNI

Final Questions

• What was the most severe issue that you found?

• What tool was the best for you?

• What are differences between the tools that you used?

• What more would you like from your static tools?

PA193 | LABS | Static checking46

https://crocs.fi.muni.cz @CRoCS_MUNI

TROUBLESHOOTING

Some hints on common issues

PA193 | LABS | Static checking47

https://crocs.fi.muni.cz @CRoCS_MUNI

Troubleshooting

• Analysis is not finished yet
– Wait an hour, try to make another bogus commit (update file)

• Start from small working examples, then extend to larger project
– E.g., simple main.java, only later large java project via ant

• Analyze failed to start for specific language
– GitHub Actions usually requires code to be compilable

• Analysis for some languages works on the compiled code/bytecode (e.g., Java)

• (static analysis runs on unfinished code, but one shall not commit broken code to repo)

– Github will invoke autobuild feature

• Tries to build various languages as defined here

– https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-
code/configuring-the-codeql-workflow-for-compiled-languages

• Paths case sensitivity
– Linux is case-sensitive for path names while Windows isn’t

• /java/ and /Java/ are the same on Windows, but not on Linux

• Clicking on log of ‘Perform Code QL Analysis’ shows nothing
– Likely GitHub bug, click left on the Analyze (language), then again on ‘Perform Code QL Analysis’

• Makefile requires tabs, not spaces

PA193 | LABS | Static checking48

https://crocs.fi.muni.cz @CRoCS_MUNI

Some tips

• Setup scanning tools at the beginning of new project

– And make sure all bugs are always fixed (similar to “compile cleanly” mantra)

• Look at the text logs produced by actions (click on named Action)

– What tool was executed, what configuration…

PA193 | LABS | Static checking49

https://crocs.fi.muni.cz @CRoCS_MUNI

NO HOMEWORK ASSIGNMENT THIS

WEEK ☺

PA193 | LABS | Static checking50

https://crocs.fi.muni.cz @CRoCS_MUNI

CHECK-OUT

PA193 | LABS | Static checking51

https://crocs.fi.muni.cz @CRoCS_MUNI

Checkout

• Which of the seminar parts you enjoyed most?

• Write three items you liked (ideally inserted as single word each)

• Write to sli.do when displayed

PA193 | LABS | Static checking52

https://crocs.fi.muni.cz @CRoCS_MUNI

THANK YOU FOR COMING, SEE YOU

NEXT WEEK

PA193 | LABS | Static checking53

	Slide 1: PA193 - Secure coding principles and practices
	Slide 2: Overview - Lab
	Slide 3: Disclaimer (Part I)
	Slide 6: Idea of the seminar
	Slide 7: Code scanning with GitHub + Actions + Codacy
	Slide 8: Steps
	Slide 10: Create repo on GitHub
	Slide 11: Enable code scanning actions
	Slide 12: Commit configuration file for Codacy scan
	Slide 13: Prepare repo content
	Slide 14: Analyze results I.
	Slide 15: Analyze results II.
	Slide 17: Notes
	Slide 18: Analyze results III.
	Slide 19: Fix bug(s)
	Slide 20: scanning of python code
	Slide 21: Setup Python actions on repo
	Slide 22: Notes
	Slide 23: Code scanning with GitHub + Actions + CodeQL
	Slide 24: CodeQL basics
	Slide 25: Setup CodeQL actions on repository
	Slide 26: Fixing build for CodeQL
	Slide 27: Fixing build for CodeQL I.
	Slide 28: Fixing build for CodeQL II.
	Slide 29: Notes
	Slide 30: Checking security of dependencies GitHub + Dependabot
	Slide 31: Enable dependabot
	Slide 32: Notes
	Slide 33: Running tool(s) locally
	Slide 34: Cppcheck for C++ files
	Slide 35: CPPCheck + OpenSSL
	Slide 36: Hearthbleed bug
	Slide 37: PREfast - Microsoft static analysis tool
	Slide 39: PREfast – example buggycode
	Slide 40: PREfast – what can be detected
	Slide 41: PREfast settings
	Slide 42: FindBugs/FindSecurityBugs - Java
	Slide 43: FindBugs/FindSecurityBugs - Java
	Slide 44: Discussion
	Slide 46: Final Questions
	Slide 47: Troubleshooting
	Slide 48: Troubleshooting
	Slide 49: Some tips
	Slide 50: No homework assignment this week 
	Slide 51: Check-out
	Slide 52: Checkout
	Slide 53: Thank you for coming, see you next Week

