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Digitization of human motion

Research in Processing Human Motion from Video Data using Deep Learning

• Skeleton-data representation
• Simplified spatio-temporal representation of human motion

• Sequence of 3D skeletons ~ a set of 3D trajectories of key body joints

• Better structured and easier to store than video-based representation

Source: https://blog.usejournal.com/3d-human-pose-estimation-ce1259979306

Video-based representation                   Skeleton-based representation
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Skeleton data

Research in Processing Human Motion from Video Data using Deep Learning

Skeleton-based representation

• Sequence S = (P1, …, Pn) of skeleton poses P1, …, Pn

• Pose Pi = (c1, …, cm) consists of 2D/3D coordinates c1, …, cm of selected key body points, 
that usually correspond to significant joints

• Bones are just “artificial lines” between pairs of key points
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Capturing technologies

Research in Processing Human Motion from Video Data using Deep Learning

• Acquisition of skeleton data

Optical sensors (e.g., Vicon)

Inertial sensors (e.g., xSens)

RGB + depth sensors (e.g., Kinect, Xtion)

Ordinary video camera (e.g., HRnet, STAF, XNect)

Type Technologies Sensors Joints Framerate Error Cost Mobility Invasivity

Optical sensors Vicon, OptiTrack, Qualisys 10–40 22–32 120–420 mm $$$ – Markers

Inertial sensors Xsens, Vicon ~20 ~20 ~120 mm–cm $$ ✓ Sensors

RGB + depth sensors Kinect, Xtion 3 25 ~30 >cm $ – –

Pose estimation OpenPose, STAF, XNect 1 14–16 ~video >cm – ✓ –

2000

2023
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Pose estimation example
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Great application potential

Research in Processing Human Motion from Video Data using Deep Learning

• A wide variety of possible application domains
• Sports – digital referees assessing the quality of performance

• Virtual reality – recognizing player movements in real time

• Smart-cities – detecting falls of (elderly) people

• Healthcare – evaluating the rehabilitation progress remotely

Source: https://blog.usejournal.com/3d-human-pose-estimation-ce1259979306Source: https://www.youtube.com/watch?v=5cI-JibDEMA

6/26



Example application – analysis of speed-
climbing performances
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Research objectives

Research in Processing Human Motion from Video Data using Deep Learning

• Research objective
• Effective and efficient content-based access to skeleton data to make them 

“findable” and thus reusable

• Content-based access operations:
• Searching | Subsequence searching

• Action recognition (classification) | Action detection

• Motion generation (synthesis)

• Challenges: Data complexity | Similarity-based comparison | Data volume

Similar?

DB
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Similarity models – handcrafted

Research in Processing Human Motion from Video Data using Deep Learning

• Similarity of actions
• Actions (sequences of poses) have different lengths → similarity can be 

determined by time-warping functions
• Dynamic Time Warping (DTW) – quadratic time complexity O(n ∙ n’)

• Uniform Time Warping (UTW) – linear time complexity O(n + n’)

• Time warping requires a pose-based similarity function

S = (P1, …, Pn)

S’ = (P’1, …, P’n’)
P’n’

Pn
P1

P’1

dist(S, S’) ~ DTW(S, S’)
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+
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dist(S, S’) ~ UTW(S, S’)
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Similarity models – handcrafted

Research in Processing Human Motion from Video Data using Deep Learning

• Similarity of poses on raw joint coordinates
• Optional pre-processing step – normalization of coordinates:

• Normalization of position, orientation, and skeleton size

• Several possibilities, e.g., sum of the Euclidean distances between 
corresponding 3D joint coordinates:

poseDist(Pi, P’j) =

𝑐=1

𝑚

𝑃𝑖
𝑐 − 𝑃′𝑗
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7
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Similarity models – deep learning

Research in Processing Human Motion from Video Data using Deep Learning

• Handcrafted models hardly capture semantics of skeleton data

• A variety of deep-learning architectures for learning semantics:
• 2D/3D Convolutional neural networks (CNNs)

• Recurrent neural networks (RNNs)

• Graph convolutional networks (GCNs)

• Transformers

• Learning:
• Supervised (~classifiers)

• Self-supervised

• Unsupervised
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Similarity models – motion images + CNN

Research in Processing Human Motion from Video Data using Deep Learning

• Input skeleton data transformed into a 2D motion image

• Training a CNN to learn semantic motion features (fixed-size vectors)
• Example of training – training for classification in a supervised way

• Similarity – features efficiently compared by the Euclidean/Cosine distance
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Similarity models – motion images + CNN

Research in Processing Human Motion from Video Data using Deep Learning

• Construction of motion images:
• Cover all skeleton poses by a virtual 3D cube

• Split the cube into 256x256x256 cells and assign a color to each cell based 
on the RGB color space (16.8M colors)

=> 3D joint position is approximated by a specific color

=> Spatially similar joint coordinates get similar colors
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Similarity models – motion images + CNN

Research in Processing Human Motion from Video Data using Deep Learning

• Transforming skeleton data into a 2D motion image

• Training a CNN using 2D motion images
• Resizing motion images to a fixed size (e.g., 224x224 pixels)

• Temporal deformations – slower/faster action executions become very similar
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Similarity models – RNNs

Research in Processing Human Motion from Video Data using Deep Learning

• An RNN with GRU/LSTM cells – suitable for learning temporal data
• Number of states/cells corresponds to the number of poses

• Semantic feature vector – output of the last cell (ht+1)
• Size of each state hi is a user-defined parameter (e.g., 512 dimensions)

• Features compared by the Euclidean/Cosine distance

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Similarity models – RNNs

Research in Processing Human Motion from Video Data using Deep Learning

• Examples of training:
• Supervised (for classification)

• Self-supervised using pairs of similar/dissimilar actions
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Searching – query-by-example paradigm

Research in Processing Human Motion from Video Data using Deep Learning

• Query-by-example searching
• The most fundamental operation – finding the k (k ∈ ℕ) database motions that 

are the most similar to a query motion

• Main challenges:
• Effective similarity model to compare the query and database motion

• Efficient retrieval algorithm to provide the k most similar motions

Query 

motion

What are the 3 most 

similar motions?

Database of motions
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Searching – query-by-example paradigm

Research in Processing Human Motion from Video Data using Deep Learning

• Query-by-example searching
• Transforming complex motions to fixed-size feature vectors (~effectiveness)

• E.g., CNN-based or RNN-based features

• Indexing feature vectors (~efficiency)
• E.g., FAISS or PPP-codes

<…, 0.5, 1.1, 9.6, …>

<…, 0.1, 3.4, 6.8, …>
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Searching – text-to-motion paradigm

Research in Processing Human Motion from Video Data using Deep Learning

• Text-to-motion searching:
• Idea – replace the motion example query by a text query

• Text query specified by a natural language description
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Searching – text-to-motion paradigm

Research in Processing Human Motion from Video Data using Deep Learning

• Learning a common text-motion space

3D skeleton sequence (motion) modality

Text modality
Common 

embedding space

“A person is walking and
making a handstand”

Motion 
encoder

(e.g., RNN-
based)

Text 
encoder

(e.g., BERT
or CLIP)
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ci – motion description feature vector
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Subsequence searching

Research in Processing Human Motion from Video Data using Deep Learning

• Query-by-example subsequence searching
• Inspecting the long database motions to find their k subsequences that are 

the most similar to a query motion

• Additional challenge to the search task:
• Efficient retrieval algorithm to localize candidate subsequences

Query 

motion

What are the 3 most 

similar sub-motions?

Database of long motions
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Subsequence searching

Research in Processing Human Motion from Video Data using Deep Learning

• Possible solution:
• Partitioning long database motions into many overlapping segments of 

different sizes

• Indexing segments of the same size within a single index structure

• Searching in a “suitable” index for the most query-similar segments

#1

#2

#3

<
 0

.5
, 
1

.1
, 
9

.6
, 
…

>
, 

<
…

>
, 

<
…

>
, 

…

<
0

.1
, 
3

.4
, 
6

.8
, 
…

>
, 

<
…

>
, 

<
…

>
, 

…

<
0

.6
, 
2

.9
, 
7

.7
, 
…

>
, 

<
…

>
, 

<
…

>
, 

…

Deep feature 
extraction

Indexing 
segment 
features

…

…

…

DEMO

22/26

http://disa.fi.muni.cz/mocap-demo/sequence?sequenceLocator=3154&annotationClassID=1&modalityWeight=0.5


Action detection

Research in Processing Human Motion from Video Data using Deep Learning

• Detecting actions (events) in skeleton-data streams
• Processing a motion stream and detecting its subsequences that correspond 

to the provided action classes

• Main challenges:
• Learning effective representations of individual action classes

• Identifying beginnings and endings of to-be-detected actions
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Action detection

Research in Processing Human Motion from Video Data using Deep Learning

• Detecting actions in streams – segment-based principle
• Applying the “subsequence-search” segmentation

• Determining similarity between segments and action classes

• Merging segments
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Action detection

Research in Processing Human Motion from Video Data using Deep Learning

• Detecting actions in streams – frame-based principle
• Adopted LSTM-based recurrent neural network to estimate a probability for 

each class and frame

Not likely Very likely
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Punch
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Past    Future
Kick KickPunch
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Future research

Research in Processing Human Motion from Video Data using Deep Learning

• Paradigm shift:

• Possible topics:
• Indexing mechanisms for very large skeleton-data collections

• Explainability of similarity models (e.g., of LSTM-based models)

• New retrieval models (e.g., regex-based or text-to-motion models)

• Analyzing interactions of more persons (e.g., detection of groups of people)
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