
Week 04 — Intro to CSS
Lukáš Grolig et al.

PB138 - Modern Markup Languages and Their Applications

Outline
First steps
Selectors
Cascading and inheritance
Browser support
The box model, flexbox vs grid
Layouting
Intro to BEM

What is CSS?
Stands for Cascading Style Sheets
Basic HTML is readable in a browser, but isn't aesthetically pleasing
CSS can change how elements look in a browser using custom rules
Clear separation of concerns: content in HTML, look and feel in CSS
Has means for basic styling as well as advanced

Colors, fonts
Animations, 3D transforms

Allows to style different viewport widths (mobile vs desktop) within a document

An example of CSS
.actionbutton {

font-size: 1.15rem;

color: white;

padding: 1rem 1.5rem;

text-align: center;

background-color: #36393F;

}

Bridging HTML and CSS
Inline CSS using style attributes
Inline CSS using a <style> tag
Linking an external CSS stylesheet

The only correct way

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8" />

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<link rel="stylesheet" type="text/css" href="theme.css" />

<link rel="stylesheet" type="text/css" href="theme-override.css" />

<link rel="stylesheet" type="text/css" href="custom-styles.css" />

</head>

<body>

</body>

</html>

CSS selectors
Used to specify which elements to target with a particular set of rules
A sort of a filter for elements
"Markings" (classes, IDs) are added to HTML to allow for easier targeting with CSS
These can be combined arbitrarily

1. Element, ID and class selectors
2. Attribute selectors
3. Pseudo-class selectors
4. Combinators

Element, ID and class selectors
They target

whole elements
HTML classes (dot prefix)
HTML identifiers (should be unique, hash prefix)

h1 { }

.box { }

#unique { }

Attribute selectors
They give you the option to target

the presence of an attribute, or
its value

a[title] { }

a[href="https://example.com"] { }

Pseudo-class selectors
Can target pseudo-classes – these match certain states of an element
For example hover , visited , or focus
They also include means to target elements based on their ancestor relationship
first-child , last-child , only-child , nth-of-type , empty , etc.

a:hover { }

Combinators
Lining up selectors behind one another implies the latter being a descendant of the former

The so-called "descendant selector"
Represented with a space character

Direct children can be targeted using the > combinator
Adjacent siblings can be targeted using the + combinator
Any siblings in general can be targeted using the ~ combinator

Combinator example
<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Document</title>

</head>

<body>

<article>

<h1 class="header header-blue">

 Lorem Ipsum

</h1>

<p>

 Lorem Ipsum is simply dummy

 text of the printing and

 typesetting industry. Lorem

 Ipsum has been the industry's

 standard dummy text ever

 since the 1500s

</p>

<p>

Secondary text

Combinator example
article > p + p {

font-style: italic;

}

CSS Evaluation
body .container #hero-container .button a { }

<--

1. Things are evaluated from right to left
2. This means we get a list of all <a> s in document
3. In this list there is filter applied and only subset with parrent .button is returned
4. In this subset, we apply filter again and get those with parrent #hero-container
5. ...

The three horsemen of CSS
Cascading
Specificity
Inheritance

Cascading
The cascading in Cascading Style Sheets carries immense importance
Stylesheets are applied in-order:

Default browser styles
External CSS files and <style> contents
Inline style attributes

Styles in stylesheets are applied top-to-bottom
Latter styles override former ones

Specificity
Different rules may apply to the same elements
Browser calculates a score for each rule -> higher score wins
Order of specificity, ascending:

Element selectors (lowest score)
Class, pseudoclass, attribute selectors
ID selectors
Inline style attributes

Selector specificity example
ul > li {

color: white;

}

.list > .list-item {

color: black;

}

= selector 2 wins

Inheritance
Simply put, most CSS property values applied to an element are inherited by their descendants
For example, color ing a document section will color all text paragraphs within
Not all properties are inherited: width and height , among others

Browser support
Writing CSS is nice, but browsers have to be able to parse our styles
Different browsers support different rules (at different times)
Developing for WebKit (or Google's fork Blink) usually works well

Firefox uses Gecko

Basic CSS concepts
Two types of boxes make up the websites we see on the daily

Block boxes
Inline boxes

Inline boxes
Are flush with previous content (inline)
Do not respect width and height properties
Padding and margin does not affect other elements
Set with display: inline CSS property

Block boxes
Are placed on a new line from previous content
Take up the full width of their container
Respect their width and height properties
Padding and margin properties push other elements away
Set with display: block CSS property, implicit for div elements

Inline block boxes
Combination of inline boxes and block boxes
Respect width and height , margin and padding works
Are still flush with surrounding content
Set with display: inline-block CSS property

The box model
Margin is invisible space around the box

Pushes elements away
Can be negative (element overlap)

The border is drawn between margin and
padding

Can be styled (width, style, color)
Padding sits between the border and box
contents

Pushes content away from border
(inwards)
Can not be negative

Content box model

Border box model

Box model comparison
Some elements default to content box, others to border box
Border box is superior (easier to work with) and as such should be set globally

* {

box-sizing: border-box;

}

Setting margin/padding/border values: individually
.box {

margin-top: 30px;

margin-right: 30px;

margin-bottom: 40px;

margin-left: 4rem;

}

.box {

margin: 30px 30px 40px 4rem;

}

Setting margin/padding/border values: in pairs
.box {

margin: 30px 20px;

// TOP LEFT

// BOTTOM RIGHT

}

Setting margin/padding/border values: altogether
.box {

margin: 30px;

}

Hiding an element: discarding it
.box {

display: none;

}

Hiding an element: keeping layout space reserved
.box {

visibility: hidden;

}

Viewing the box model in browser devtools

Overflow
.no-overflow {

overflow: hidden;

}

.visible-overflow {

overflow: auto; // same as visible

}

.display-scrollbar {

overflow: scroll;

}

Truncation
.truncate {

white-space: nowrap;

overflow: hidden;

text-overflow: ellipsis;

}

Responsive design
Using a set of practices to allow having a single page/stylesheet
When smartphones were introduced, companies would have to maintain a separate mobile version of
their site
Today's websites should be developed mobile-first
Using browser dev tools to change viewport to simulate a phone screen
Tablet and desktop styles come later
But how do we distinguish which ones to use when?
Media queries

Media queries
Media queries were introduced in 2009

Allow for quicktesting of users viewport (and its size)
Screen size values are referred to as breakpoints

@media only screen and (min-width: 768px) {

body {

background-color: lightblue;

 }

}

Typical breakpoints
Obviously not set in stone but fairly common among different device manufacturers

1. Extra small devices (phones, 600px and down)
2. Small devices (tablets in portrait mode, large phones, 600px and up)
3. Medium devices (landscape tablets, 768px and up)
4. Large devices (laptops or small desktops, 992px and up)
5. Extra large devices (large laptops and dekstops, 1200px and up)

Device orientation
@media only screen and (orientation: landscape) { /* or portrait */

body {

background-color: lightblue;

 }

}

Layouting with CSS
Historically, using tables for content layout was the common way
Sadly not very responsive and semantically wrong
Using float properties works, not easy to get right
New ways have emerged: flexbox and grid

Flexbox
A one-dimensional container for arranging items in rows or columns
Items flex (expand) to fill additional space or shrink to fit into smaller spaces
It is a reliable solution that works cross-browser

<div class="flex-container">

<div class="flex-item">1</div>

<div class="flex-item">2</div>

<div class="flex-item">3</div>

</div>

.flex-container {

display: flex;

flex-direction: row | column;

}

Aligning content along the main axis
Using justify-content
Examples for flex-direction: row :

Align content along the secondary axis
Using align-items
Examples for flex-direction: row :

Assigning properties to individual flex items

Can control whether an item takes up residual space (flex-grow)

Can specify how much an item shrinks if it were to overflow (flex-shrink)

Can specify minimum size of item value (it cannot shrink below it) with flex-basis

These can and should be shorthanded (flex: 0 1 300px)

Items can also be reordered using the order property

CSS grid: part 1
Useful for two-dimensional layout where flexbox does not suffice
Basically does what tables used to be used for - but much better - and more

.container {

grid-template-columns: 40px 50px auto 50px 40px;

grid-template-rows: 25% 100px auto;

}

CSS grid: part 2

.container {

grid-template-columns:

 [first] 40px [line2] 50px [line3]

 auto [col4-start] 50px [five] 40px [end];

grid-template-rows:

 [row1-start] 25% [row1-end]

100px [third-line] auto [last-line];

}

CSS grid: part 3
Note: items can overlap each other, stacking order can be controlled with z-index

.item-b {

grid-column-start: 1;

grid-column-end: col4-start;

grid-row-start: 2;

grid-row-end: span 2;

}

Practices on organizing CSS
Keeping it consistent -> using a methodology
Avoiding overly-specific selectors
Commenting CSS (labelling sections like typography)
Breaking each property on a new line
Using selector lists to avoid duplicite styles

What is BEM?

A way of defining CSS classes to use with HTML elements

BEM methodology helps to think with components – important to understand

Block - a standalone entity that is meaningful on its own

Element - a part of a block with no meaning on its own, semantically tied to block

Modifier - a flag on block/element used to modify appearance or behavior

Adhering to BEM
<button class="button">Normal button</button>

<button class="button button--state-success">Success button</button>

<button class="button button--state-danger">Danger button</button>

.button {

display: inline-block;

border-radius: 3px;

padding: 7px 12px;

border: 1px solid #D5D5D5;

background-image: linear-gradient(#EEE, #DDD);

}

.button--state-success {

color: #FFF;

background: #569E3D linear-gradient(#79D858, #569E3D) repeat-x;

border-color: #4A993E;

}

.button--state-danger {

color: #900;

}

A word on CSS preprocessors
Sass, Less, PostCSS (and others) augment regular CSS
Add variables, mixins, computed values
Need to compile files to regular CSS before using in production
Over time, variables and other features were introduced to CSS itself
The need to use preprocessors has decreased

SCSS
$font-stack: Helvetica, sans-serif;

$primary-color: #333;

body {

font: 100% $font-stack;

color: $primary-color;

}

SCSS nesting
nav {

ul {

margin: 0;

padding: 0;

list-style: none;

 }

li { display: inline-block; }

a {

display: block;

padding: 6px 12px;

text-decoration: none;

 }

}

SCSS mixins
@mixin transform($property) {

 -webkit-transform: $property;

 -ms-transform: $property;

transform: $property;

}

.box {

@include transform(rotate(30deg));

}

SCSS inheritance
%message-shared {

border: 1px solid #ccc;

padding: 10px;

color: #333;

}

.message {

@extend %message-shared;

}

.success {

@extend %message-shared;

border-color: green;

}

A word on CSS frameworks
They make a developer's job easier
Many to choose from, different approaches
Emphasis on mobile-first, long-term popular: Bootstrap
Based on flexbox: Bulma
Based on grid: Foundation (used by IS MU)
Utility-first and modern: Tailwind

Tailwind.css example
<button

type="button"

class="inline-flex items-center px-3 py-2 border

 border-transparent text-sm leading-4 font-medium

 rounded-md shadow-sm text-white bg-indigo-600

 hover:bg-indigo-700 focus:outline-none focus:ring-2

 focus:ring-offset-2 focus:ring-indigo-500">

 Button text

</button>

Resources
https://slides.com/lukasgrolig/pb138-introduction-to-css
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes
https://www.smashingmagazine.com/2019/02/css-browser-support/
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/
https://www.browserstack.com/guide/top-css-frameworks

https://slides.com/lukasgrolig/pb138-introduction-to-css
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes
https://www.smashingmagazine.com/2019/02/css-browser-support/
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/
https://www.browserstack.com/guide/top-css-frameworks

