
Week 05 — Intro to YAML and Docker
Lukáš Grolig et al.

PB13 8 - Mo de rn Markup Language s and The ir A pp licatio ns

Outline
YAML Ain' t Markup Language
Infrastructure
Virtualizat ion & Containerisat ion
Container engine: Docker
Orchestrat ion: Compose

YAML Ain't Markup Language
Valid extension .yaml
YAML is case sensit ive
Uses spaces instead of tabs

An employee record

martin:

name: Martin D'vloper

job: Developer

skill: Elite

YAML: Data types
scalars (strings, numbers, booleans)
sequences (arrays / lists)
mappings (hashes / dict ionaries)

YAML: Scalars

integer: 25

string: "25"

float: 25.0

boolean: true

foo: .inf

bar: -.Inf

plop: .NAN

foo: ~

bar: null

- true # boolean

- "true" # string, because it's quoted

- ��str true # string, because of ��str

- ��bool "true" # boolean, because of ��bool

Yaml is support ing single ' or double " quotat ion marks. Double quotat ion marks allow you to use
escapings to represent ASCII and Unicode characters.

YAML: Sequences
Lists - single dimensional and mult idimensional

One dimensional

- Cat

- Dog

- Goldfish

Multidimensional

-

- Cat

- Dog

- Goldfish

-

- Python

- Lion

- Tiger

YAML: Mappings

Simple dictionary

animal: pets

Mapping with sequence

units:

- Footman

- Grunt

- Knight

- Ogre

Inline with sequence

npcflag: [GOSSIP, VENDOR]

Complex type

? ["Tower", "Tier 1 Unit"]

: "Gremlin"

Inline

foo: { thing1: huey, thing2: louie, thing3: dewey }

YAML: Sets

set:

? item1

? item2

? item3

YAML: Special use-cases for mappings

List with mapping

-

name: Mark McGwire

points: 65

grade: "A"

-

name: Sammy Sosa

points: 63

grade: "B"

Mapping of mapping

Mark McGwire: {hr: 65, avg: 0.278}

Sammy Sosa: {

hr: 63,

avg: 0.288

}

YAML: Refferences, Divider marker

��� # Start of document

hr:

- Mark McGwire

Following node labeled SS

- &anchor Sammy Sosa

rbi:

- *anchor # Subsequent occurrence

- Ken Griffey

YAML: Complex example

���

invoice: 34843

date : 2001-01-23

bill-to: &id001

given : Chris

family : Dumars

address:

lines: |

 458 Walkman Dr.

 Suite #292

city : Royal Oak

state : MI

postal : 48046

ship-to: *id001

comments:

Late afternoon is best.

Backup contact is Nancy

Billsmer @ 338-4338.

YAML: Typing

- true # boolean

- "true" # string, because it's quoted

- ��str true # string, because of ��str

- ��bool "true" # boolean, because of ��bool

Infrastructure

Infrastructure

What is a server?

Environment where your applicat ion lives

Types of environments:
Baremetal
Virtual machine
Container
Serverless

Baremetal, Virtual machines often use Stacks (LEM*, LAM**)

Environment is choosen by many aspects, there is no clear path to take

* LEM (Linux, Nginx, MySQL) + PHP, NodeJS���
** LAM (Linux, Apache, MySQL) + PHP, NodeJS���

Virtualisation

Why containerisation matters?
Own user space but share host 's kernel - minimal and safe (if root less)
Uses a fract ion of comput ing power compared to Virtual Machines
Increased portability (Versioning, OS Independent , Architecture dependent)
Consistent operat ion (Same environment on deployment machines as on dev machines)
Rapid startup, deployment and scalling

It works on my machine ¯ _(ツ)_/¯
– Developer

Container runtimes & engines
Runs, Manages containers for operat ing system

Low level

runC - runner (Go)
youki - runner (Rust)
containerd - daemon (Go)

High level

Docker
Podman
CRI-O (Kubernetes)
LXC

Key concepts
Host - Place where containers run
Engine - Docker, Podman
Containerf ile - Definit ion, set of instruct ions for Image (eg. Dockerf ile)
Image - Template for creat ing a container
Registry - Storage for versioned images (eg. Dockerhub, Github, Git lab)
Container - Running image within user space

Installing the engine
Docker desktop (User friendly: Win, Mac)
Docker CLI¹
Podman¹

The following slides depends on engine, but they
share same concepts

¹ Linux ge e k fr ie nd ly

Running images
Image is either pulled from registry or kept locally

Starts container in with interative session

docker run -it alpine sh

Starts container in background and bind port to host

docker run -d -p 127.0.0.1:8888:5000 application:v1

Basic commands

Shows currently running containers

docker ps

List images or volumes

docker images or volumes

Kills running container

docker kill <container-id>

Removes stopped container

docker rm <container-id>

Creating own images
There are mult iple builders for images: Buildah,
Kaniko for creat ing OCI Images

1 . Define Containerf ile or Dockerf ile
2. Build image & Tag image
3. (Opt ionally) Push image to registry

Containerfile

> cat Containerfile

Define image base for the image

This image has already node-js and npm installed

FROM node:16-alpine

Create and change active working directory

WORKDIR /app

Install runtime dependency into image

RUN apk add -u chromium

Copy files from local filesystem to CWD

COPY hello.js .

When running the container will expose port 8080

EXPOSE 8080

Define the single process to run inside of container

CMD ["hello.js"]

Building images

Build image in current context (CWD)

Specify tag - container name and version

docker build -f Containerfile -t ghcr.io/pb138/app:1.0.0 .

Volumes and mounting
During lifet ime of container, f iles can be produced
or accessed by container.

Only f iles required to run the container should
be the part of image
Three types of mounts

Bind mount to host f ilesystem
Volume - Managed by Engine
tmpfs - Temporary f ilesystem mount

eg. Store photos generated by container or
uploaded by users

Networking and ports

Under the hood it manipulates iptables rules

Containers have their own network interfaces

And following network drivers:
host (Removed isolat ion)
bridge (Default network driver)
overlay (Cross docker daemon communicat ion)
ipvlan, macvlan (Allows to controll addressing)
none

Networking of container has following
funct ionallit ies:

Connect mult iple containers within the network
Expose container ports to network interface

Rewind: What is application?
Mult iple services (Database, Cache, Applicat ion runt ime, Webserver, Storage)
Need for mult iple containers -> container orchestrator

Compose
Simplest orchestrator
Used for local development and smaller environments (few servers - swarm)
Defined in YAML
Stored in compose.yml , docker-compose.yml

Composefile
Version definit ion
Services - Definit ion of services to orchestrate
Volumes - Persistent volume definit ion
Secrets - Sensit ive data storage
Networks - Networks used for containers to communicate
Configs - Configurat ion f iles exposed to container

version: "3.7"

services:

frontend:

build: frontend

ports:

- 3000:3000

volumes:

- ./frontend:/usr/src/app

networks:

- frontend

backend:

build: backend

volumes:

- ./backend:/usr/src/app

networks:

- backend

- frontend

networks:

frontend:

backend:

Compose commands

Start services in background

docker-compose -f compose.yml up -d

Show logs and follow them

docker-compose -f compose.yml logs -f

Kubernetes: orchestration
Used for large scale product ion environments, where scallability and
isolat ion plays signif icant role in architecture.
Provides:

Service discovery and load balancing
Self-healing
Storage orchestrat ion

Kubernetes: concepts
Pod - Group of cohesive containers (Smallest deployable
unit , opt ionally, they can use shared volumes and network
resources)
Service - Group of pods providing funct ionallity to
another group of pods (Service)
Namespace - Isolat ion of resources withing a single
cluster
Node - Worker machine, where containers run
Cluster - Group of nodes

k-proxy

kubelet

sched
schedsched

Control Plane

Node

etcd

Kubernetes cluster

api
api

api

c-c-m
c-c-m

c-c-m

c-m
c-m

c-m

Node Node

k-proxy

kubelet kubelet

k-proxy
Control plane

Scheduler
sched

Cloud controller
manager
(optional) c-c-m

Controller
manager c-m

kubelet
kubelet

kube-proxy
k-proxy

(persistence store)
etcd

etcd

Node

API server
api

Kubernetes:
components
Control plane is
orchestrat ion layer that
exposes the API and
interfaces to define,
deploy, and manage the
lifecycle of containers.

Kubernetes: management
Web based user interface
Provides basic t roubleshoot ing, management
of cluster
Can be used to deploy, scale and restart
applicat ions

Courses on FI (Containerisation & Virtualisation)
PB176 Základy kvality a správy kódu
PV282 Designing and building infrastructure in public cloud

Resources
https://github.com/containers/youki
https://cri-o.io
https://www.cncf.io
https://linuxcontainers.org
https://github.com/JaSei/docker_under_the_hood_talk
https://blog.t tulka.com/containers-under-the-hood
https://iximiuz.com/en/posts/you-need-containers-to-build-an-image
https://okontajneroch.sk
https://www.docker.com/resources/what-container
https://medium.com/swlh/understand-dockerf ile-dd11746ed183
https://www.mankier.com/5/Containerf ile
https://docs.docker.com/engine/reference/builder
https://github.com/compose-spec/compose-spec/blob/master/spec.md
https://docs.docker.com/compose/compose-file/compose-file-v3/
https://iximiuz.com/en/posts/containers-vs-pods/
https://kubernetes.io/docs/concepts/

https://github.com/containers/youki
https://cri-o.io/
https://www.cncf.io/
https://linuxcontainers.org/
https://github.com/JaSei/docker_under_the_hood_talk
https://blog.ttulka.com/containers-under-the-hood
https://iximiuz.com/en/posts/you-need-containers-to-build-an-image
https://okontajneroch.sk/
https://www.docker.com/resources/what-container
https://medium.com/swlh/understand-dockerfile-dd11746ed183
https://www.mankier.com/5/Containerfile
https://docs.docker.com/engine/reference/builder
https://github.com/compose-spec/compose-spec/blob/master/spec.md
https://docs.docker.com/compose/compose-file/compose-file-v3/
https://iximiuz.com/en/posts/containers-vs-pods/
https://kubernetes.io/docs/concepts/

