
Week 05: CSS

1

Agenda
CSS properties
Selectors recap
Flexbox vs grid
BEM revisited
Hands on

2

Let's start!

3

Main CSS properties: divided by purpose

Background: solid colors, gradient, images, positioning, repetition

Box model: width and height, padding and margin, border color, style, and width

Positioning: left, right, top, and bottom, z-index

Typography: color, font-size, -family, -weight, line-height, text-align, -transform

Transitions

Animations

Flex parents: flex-direction, -wrap, (-flow), align-items, justify-content

Flex children: flex-basis, -grow, -shrink, order

Grid parents: grid-template-rows, -template-columns, -template-areas, -column/row-gap, ...

Grid children: -column-start and -end (-column shorthand), ditto for column, ...

4

Property reference

CSSreference.io
MDN

Let's take a look together.

5

https://cssreference.io/
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

Selector recap

6

Element, ID and class selectors

They target
whole elements
HTML classes (dot prefix)
HTML identifiers (should be unique, hash prefix)

h1 { }

.box { }

#unique { }

7

Attribute selectors

They give you the option to target
the presence of an attribute, or
its value

a[title] { }

a[href="https://example.com"] { }

8

Pseudo-class selectors

Can target pseudo-classes – these match certain states of an element
For example hover , visited , or focus
They also include means to target elements based on their ancestor relationship
first-child , last-child , only-child , nth-of-type , empty , etc.

a:hover { }

9

Selector lists

The CSS selector list is denoted by a comma (,) and selects all matching nodes

a:hover {

color: red;

}

#navbar {

color: red;

}

a:hover, #navbar {

color: red;

}

10

Combinators

Lining up selectors behind one another implies the latter being a descendant of the former
The so-called "descendant selector"
Represented with a space character

Direct children can be targeted using the > combinator
Adjacent siblings can be targeted using the + combinator
Any siblings in general can be targeted using the ~ combinator

11

Demo: CSS selector game
https://flukeout.github.io/

Can you reach level 17?

12

https://flukeout.github.io/

Flexbox and grid

Which one to use? It depends

Flexbox is useful for one-dimensional layouts
Can change orientation based on viewport width
Order of children can change as well
Easy to distribute and align space between elements

Grid is better suited for two-dimensional layouts
Essentially behaves like a table

13

Understanding flex properties

For parent: flex-direction, flex-wrap, align-items, justify-content, align-content

For items: align-self, flex-grow, flex-shrink, flex, order

Interactive examples

Helpful tip: knowing how to use flex order may come in handy in the iteration.

14

https://codepen.io/enxaneta/full/adLPwv

Understanding grid: part 1
Get started by defining a container:

.container {

display: grid | inline-grid;

}

15

Understanding grid: part 2
Lay out the layout:

grid-template-columns or grid-template-rows takes
Track-size (length, percentage, free space portion fr , or auto)
Arbitrary name to label this section (optional)

.container {

grid-template-columns: 1fr 50px 1fr 1fr;

 // four 50px columns

}

16

Understanding grid: part 2.5
Lines between rows and columns can be explicitly named (square bracket notation):

.container {

grid-template-columns: [first] 40px [line2] 50px [line3] auto [col4-start] 50px [five] 40px [en

grid-template-rows: [row1-start] 25% [row1-end] 100px [third-line] auto [last-line];

}

Tip: repeating parts in column/row definition can be streamlined with repeat(n, ...)

17

Understanding grid: part 3

Define where slots start/end by referring to line numbers or names
Slots can span across multiple tracks (span <number>) or until they hit a specific line (span <name>)

.item {

grid-column-start: <number> | <name> | span <number> | span <name> | auto;

grid-column-end: <number> | <name> | span <number> | span <name> | auto;

grid-row-start: <number> | <name> | span <number> | span <name> | auto;

grid-row-end: <number> | <name> | span <number> | span <name> | auto;

}

grid-column: a b = shorthand for grid-column-start: a and grid-column-end: b
ditto for rows

18

Understanding grid: part 4

Assign "grid areas" to items
Define layout on grid element
Dots signify empty cells

.item-a {grid-area: header}

.item-b {grid-area: main}

.item-c {grid-area: sidebar}

.item-d {grid-area: footer}

.container {

display: grid;

grid-template-columns: 50px 50px 50px 50px;

grid-template-rows: auto;

grid-template-areas:

"header header header header"

"main main . sidebar"

"footer footer footer footer";

}

19

20

Congratulations on understanding CSS Grid!
For more thorough explanations, refer to the Complete Grid Guide.

21

https://css-tricks.com/snippets/css/complete-guide-grid/

Let's talk BEM

22

Block

An independent page component that can and should be reused
Its name describes its purpose (button), not its appearance (not red, not big)
Blocks can be nested in each other

<!-- `search-form` block -->

<form class="search-form">

<!-- `input` element in the `search-form` block -->

<input class="search-form__input">

<!-- `button` element in the `search-form` block -->

<button class="search-form__button">Search</button>

</form>

23

Element

A semantical part of a block, unable to stand on its own
Separated from the block name with a double underscore (block-name__element-name)
Can be nested, but only the outermost block is projected into element name (so never
block__elem1__elem2)

When to use a block and when an element?

If a section of code might be reused and it doesn't depend on other page components being
implemented => block
If a section of code can't be used separately without the parent entity => element

24

Modifier

Defines the appearance, state or behavior of its parent (block or element)
Separated with a double hyphen (block-name--modifier)
Can never be used alone (is semantically tied)

<!-- The `search-form` block has the `focused` Boolean modifier -->

<form class="search-form search-form--focused">

<input class="search-form__input">

<!-- The `button` element has the `disabled` Boolean modifier -->

<button class="search-form__button search-form__button--disabled">Search</button>

</form>

25

Questions?

26

Hands on: Iteration 04
You can find the assignment in GitLab issues.

Let's take a look together.

27

https://gitlab.fi.muni.cz/pb138/pb138-iterations-2022/-/issues/13

An important iteration tip
Some (but very few) HTML elements may appear more than once. It is nearly impossible to achieve the
desired result without some repetition – but use it sparsely.

28

Before you start:

Please check whether your tutor has already accepted your MR
If they have, make sure you have merged your solution from the previous week

Note: if your tutor has not seen your MR, it's completely ok. You do not need to have the previous iteration
merged to be able to work on a new one - iterations are independent. However, if you do have an accepted
MR that still has not been merged, make sure to merge it first.

29

