Seminar 08 - Working with the database

Database - best practices

Using Prisma as the ORM tool to work with databases
Express.js - creating a web server

Twig.js - rendering html for the browsers

Write ERD for the database
Model the tables according to the ERD

Deleting data: records should have a visibility attribute (f.e. deletedAt) - deleting tables can cause
issues

Separate tables for addresses, prices and data that can change over time

Storing multimedia in the database - a BAD idea (when talking about relational DBs) - databases are
often cached in-memory

Primary keys should always be either UUIDs or integers with autoincrement function
Joining many-to-many relations done via join tables

Prisma - Install

e Add TypeScript to the project, as done in the previous seminar
e Add Prisma to the project

npm 1 prisma

Extend the tsconfig.json from the last seminar with these lines - if your code does not compile (however,
there should not be any issues)

"compilerOptions": {
"sourceMap": true,
"outDir": "dist",
"strict": true,

"Lib": ["esnext"],
"esModuleInterop": true

}

https://www.prisma.io/docs/getting-started

Prisma - Schema & Migrations

This command will bootstrap the Prisma in the repository:
npx prisma init

Created files: prisma/schema.prisma and .env file with the database connection string.

Schema contains our table definitions.

https://www.prisma.io/docs/getting-started/setup-prisma/start-from-scratch/relational-databases/using-prisma-migrate-typescript-postgres

model Artist {
id Int @default(autoincrement()) @id
name String @db.VarChar(255)
verified Boolean @default(false)
profilePicture String?
coverPicture String?
description String
albums Album[]

}

model Album {
id Int @default(autoincrement()) @id
artist Artist @relation(fields: [artistId], references: [1d])
artistId Int
name String @db.VarChar(255)
releaseDate DateTime
description String
coverPicture String?

https://www.prisma.io/docs/getting-started/setup-prisma/start-from-scratch/relational-databases/using-prisma-migrate-typescript-postgres

Connecting to the database

The connection string is stored in the .env file - Prisma uses it to create a connection to the DB:

DATABASE_URL="postgresql: //johndoe:randompassword@localhost:5432/mydb?schema=public"
e NEVER commit these files - they should never be tracked by the versioning software

If you have your own computer, you can run a Postgres database in a container via the provided compose
file

We, unfortunately, cannot run containers at school =

We can, however, connect Prisma to sqlite database, which is by default available (at least on the
nymfe machines) on school computers

Create a file database.db inthe prisma folder

Modify the portion of the prisma.schema file:

{

provider = "sglite"
url = "file:./database.db"

Now you can follow along with the seminar!

Prisma - Schema & Migrations

After writing the schema, we need to generate a migration.
Migration is a file with SQL definitions, which defines the database tables.
Every schema change must be reflected by running another migration (which will update the DB) and re-

compiling the Prisma client.

npx prisma migrate dev --name init

This command will also generate a new client for us

Adding Prisma to the code

import { PrismaClient } from '@prisma/client'
const prisma = new PrismaClient()

const main = async () = {

// ... you will write your Prisma Client queries here
}
main()
.catch(e = A
throw e
})

.finally(async () = {
await prisma.$disconnect()

})

10

Express.js - Web Application Framework

e Framework that allows quickly building web applications
e Provides a very minimal, precise set of tools necessary for creating web applications
e Used by many other JS/TS frameworks as their backbone

11

Express - Install

npm i express
npm i -D @types/express

12

https://expressjs.com/

Adding express to the code

import express, { Express, Request, Response } from 'express';

const app: Express = express();
const port = 8080;

app.listen(port, () = A
console.log(Server is running at https://localhost:${port});

});

13

Express - routes and handlers

e The data is firstly processed by a pipeline of functions called middleware

e These functions can, for example, check privileges or handle things that need to happen to every request
before it is processed individually

e The request then gets processed via a router
e Router then routes the requests it defines the flow of individual requests
e Each route has an assigned handler - a function that processes the request individually

app.get('/', (req: Request, res: Response) = {
res.send('Express + TypeScript Server');

});

14

Express - Server-side rendering

In contrast to the later part of the course, which specialises in Single Page Applications, dynamically
displaying content from the database can also be done via server-side rendering.

For example, popular CMS (content management system) WordPress uses this approach.

We need to define an HTML template (+ styles with CSS), which will be filled with the data loaded from the
database.

For templates, we will use a popular library called Twig.js.

15

Twig - Install

npm 1 twig
npm i -D @types/twig

16

https://github.com/twigjs/twig.js/

Adding Twig to the code

import Twig from 'twig';
import express from 'express';

const app = express();
const port = 3000;

// This section is optional and used to configure twig.
app.set("twig options", {
allow_async: true, // Allow asynchronous compiling
strict_variables: false

});

app.get('/', (req, res) = {
res.render('index.twig', {
message : "Hello World"
});
});

app.listen(port);

17

All three technologies together

import Twig from 'twig';
import express from 'express';
import { PrismaClient } from '@prisma/client’';

const prisma = new PrismaClient();
const app = express();

app.get('/', async (req, res) = A
const albums = await prisma.albums.findMany ({
where: {
name:
equals: "Thriller"

}
}.

});

res.render('index.twig', {
albums: albums

});
});

app.listen(3000);

18

Demo - Spotify database & basic server-side rendering

19

Hands on: lteration 06

You can find the assignment in GitLab issues as well as in the interactive syllabus.

Let's take a look together.

20

https://gitlab.fi.muni.cz/pb138/pb138-iterations-2022/-/issues/16
https://is.muni.cz/auth/el/fi/jaro2022/PB138/index.qwarp?prejit=9170229

Before you start:

e Please check whether your tutor has already accepted your MR
e If they have, make sure you have merged your solution from the previous week

Note: if your tutor has not seen your MR, it's completely ok. You do not need to have the previous iteration
merged to be able to work on a new one - iterations are independent. However, if you do have an accepted
MR that still has not been merged, make sure to merge it first.

2]

