
Seminar 07 - Working with the database

1



Agenda
Database - best  pract ices
Using Prisma as the ORM tool to work with databases
Repository pattern

2



Database - best practices
Write ERD for the database
Model the tables according to the ERD
Delet ing data: records should have a visibility att ribute (f .e. deletedAt ) - delet ing tables can cause
issues in large, t ight ly coupled schemas
Separate tables for addresses, prices and data that  can change over t ime
Storing mult imedia in the database - a BAD idea (when talking about  relat ional DBs) - databases are
often cached in-memory
Primary keys should always be either UUIDs or integers with autoincrement  funct ion, t ry to avoid
composite keys
Joining many-to-many relat ions done via join tables

3



Prisma - Install
Add TypeScript  to the project  in the same fashion as in the previous seminar
Add Prisma to the project

# Prisma is a developer dependency, only the client is used at runtime!

npm i -D prisma

If  your code does not  compile, extend your tsconfig.json  f ile (however, there should not  be any issues)

"compilerOptions": {

"sourceMap": true,

"outDir": "dist",

"strict": true,

"lib": ["esnext"],

"esModuleInterop": true

}

4

https://www.prisma.io/docs/getting-started


Prisma - Schema & Migrations
This command will bootstrap the Prisma in the project :

npx prisma init

Created f iles: prisma/schema.prisma  and .env  f ile with the database connect ion string.

Schema contains our table definit ions.

5

https://www.prisma.io/docs/getting-started/setup-prisma/start-from-scratch/relational-databases/using-prisma-migrate-typescript-postgres


Schema example
Note: for the rest  of the slides, we' re referencing
this schema!

6

https://www.prisma.io/docs/getting-started/setup-prisma/start-from-scratch/relational-databases/using-prisma-migrate-typescript-postgres


Connecting to the database - SQLite
As we moved the Docker lecture to the end of the semester, we will be using SQLite as our database
provider of choice (both during interat ions, and on seminars)
We can connect  Prisma to sqlite  database - which is a database provider available (at  least  on the
linux machines) on school computers
Create a f ile database.db  in the prisma  folder
Modify the port ion of the prisma.schema  f ile:

Prisma will stop looking for the .env  f ile and connect  to the database.db  f ile via SQLite. Now you can follow
along with the seminar!

7



Connecting to the database - Postgres (optional)
If  you have your own computer and already know Docker/podman you can run a Postgres database in a
container. We advise you to create a docker-compose  f ile which will set  the database up and add some
other container to look into the database, such as adminer .

The connect ion string is stored in the .env  f ile - Prisma uses it  to create a connect ion to the DB:

# for postgres database

DATABASE_URL="postgresql://johndoe:randompassword@localhost:5432/mydb?schema=public"

NEVER commit  these f iles - they should never be t racked by the versioning software

8



Prisma - Schema & Migrations
After writ ing the schema, we need to generate a migrat ion.

Migrat ion is a f ile with SQL definit ions, which defines the database tables.
Every schema change must  be ref lected by running another migrat ion (which will update the DB) and re-
compiling the Prisma client .

npx prisma migrate dev --name init

This command will also generate a new client  with type definit ions for us

9



Adding Prisma to the code

import { PrismaClient } from '@prisma/client'

const prisma = new PrismaClient()

const main = async () => {

// ... you will write your Prisma Client queries here

}

main()

  .catch(e => {

throw e

  })

  .finally(async () => {

await prisma.$disconnect()

  })

10



Repository pattern
Separates the database logic from the rest  of the applicat ion
Creates an API to work with your database

The API stays the same, even if  the underlying implementat ion is completely rewrit ten
Makes working with the db in your applicat ion (REST API, GraphQL app, ...) as simple, as calling a
funct ion (with correct  parameters) and await ing the result

Read more here.

Usage (you will see more of repository pattern in the opt ional demo at  the end of this presentat ion):

import userRepository from './repositories/user';

// reading all albums in the database

const result = await albumRepository.read.all();

11

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design


CRUD operations in Prisma
Prisma allows several different  CRUD (create, read, update, delete) operat ions:

findMany ,  findFirst ,  findUnique : all read data - obvious from names
create ,  createMany : Creates a record / creates many records in a batch query
update ,  updateMany : Updates a single record / updates many records in a batch query
upsert : Create OR update a record (updates an exist ing record, or creates it  if  it  does not  exist)
delete ,  deleteMany : Deletes a single record / deletes many records in a batch query

Example:

// find all users

const artists = await prisma.artist.findMany();

12



Prisma queries
Prisma query is comprised of some parts:

where  f ield: specif ies the condit ions which we want  to run the query with
select  f ield: which data we want  to retrieve from the database (if  not  included, the whole model/record

gets retrieved)
data  f ield: specif ies what  data we want  to update / create
include : joining data from relat ions in the response - does not  work with select  on the same level,
select  can also join the related records if  we want  to only retrieve some parts of the model/record!
orderBy : ordering of the data - we want  to let  the db do the ordering whenever possible
take : number of records to retrieve, can be used only in conjunct ion with orderBy  to ensure

determinist ic behavior
skip : enables paginat ion

And many more, see the whole client  documentat ion for the detailed

13

https://www.prisma.io/docs/concepts/components/prisma-client


Prisma query example

// find all albums where their description contains the word 'rap'

const albums = await prisma.album.findMany({

where: {

description: {

contains: 'rap'

    },

  },

});

14



Prisma transactions
Encapsulate a code that  needs to either succeed as a whole or fail as a whole
Either sequent ial or interact ive
On error, the t ransact ion rolls back - as if  it  was never executed

Interactive transactions

Should perform only the necessary operat ions
Use them together with Isolat ion levels to avoid race condit ions within t ransact ions
Use them with caut ion!

Read the whole t ransact ions documentat ion for more details.

15

https://www.prisma.io/docs/concepts/components/prisma-client/transactions


Prisma interactive transaction example

const result = await prisma.$transaction(async (transaction) => {

// use "transaction" parameter of this async function instead of regular "prisma" calls

const albums = transaction.album.findFirst({

// whatever query here

  });

if (albums) {

// we can now write some logic within the transaction, whatever the condition

// or intended reason for this custom logic is

  }

return transaction.artist.update({

// perform some operation that is dependent on the previous query

// and previous logic within the transaction

  });

});

16



Many-to-many relationships: implicit & explicit
Prisma can handle basic many to many relat ion by defining lists of items in both affected Prisma models
in the schema
In case you need to store more informat ion than just  the many to many relat ion, you need to create an
explicit  many to many relat ion by defining a join table with all necessary propert ies.
We recommend using implicit  relat ionships only if  you don' t  wish to extend them in the future.

17



Exceptions from Prisma
As with everything, Prisma calls can also fail due to mult iple reasons:

Failed constraints during the query execut ion
Conflict ing query creat ion (using select  together with include  on the same level)
Unable to connect  to the database (for various reasons)
Database does not  have correct  models (connect ion successful, but  migrat ions have not  been executed
yet)

Always use Prisma queries within a t ry-catch block:

try {

const something = await prisma. // write some prisma query(/ies) or transaction(s)

} catch (e) {

// handle error

}

18



Result  type
In funct ional programming, Result  types indicate the status of some operat ion which can fail
They are null-safe, always returning some value

In TypeScript , we can use the @badrap/result  npm package, which brings the Result  type into TypeScript .
An example (taken from the npm package page):

import { Result } from '@badrap/result';

const res = Math.random() < 0.5 ? Result.ok(1) : Result.err(new Error("oh no"));

if (res.isErr) {

// TypeScript now knows that res is a Result.Err, and we can access res.error

  res.error; // Error("oh no")

}

if (res.isOk) {

// TypeScript now knows that res is a Result.Ok, and we can access res.value

  res.value; // 1

}

For more informat ion about  results, you can read this wikipedia page.
19

https://www.npmjs.com/package/@badrap/result
https://en.wikipedia.org/wiki/Result_type


Demo - complete tasks in the Prisma playground
Open Prisma playground and level up your Prisma knowledge!

20

https://playground.prisma.io/


Optional demo: repository pattern
Create a repository pattern that  allows working with the data defined by the provided ERD (next  slide, and
also in the template)

If  you wish, you can create everything from scratch (the preferred way, to really learn how to create such
project). The steps with the asterisk (*) have already been done by us in the template to speed the process
up (the template uses SQLite as the database provider).

*Create a TypeScript  project  in Node.js and add Prisma
*Create a Prisma schema from the ERD, run migrat ions
Create a repository pattern:

*Define repositories
*Define all possible operat ions (CRUD, in case needed define addit ional) over the database
*Write type definit ions for input  / output  data from the repository funct ions
Write Prisma queries
Use the repository in some example code

Add script  to package.json  to execute the script

21

https://is.muni.cz/auth/el/fi/jaro2023/PB138/index.qwarp?prejit=11016745
https://is.muni.cz/auth/el/fi/jaro2023/PB138/index.qwarp?prejit=11016745


Optional demo: ERD
A "complex" ERD for the database:

22



Hands on: Iteration 05 - Prisma & Repository pattern
You can f ind the assignment in GitLab issues.

Let 's take a look together.

23

https://gitlab.fi.muni.cz/pb138/pb138-iterations-2023/-/issues/7


Before you start :

Please check whether your tutor has already accepted your MR
If  they have, make sure you have merged your solut ion from the previous week

Note: if your tutor has not seen your MR, it's completely ok. You do not need to have the previous iteration
merged to be able to work on a new one - iterations are independent. However, if you do have an accepted
MR that still has not been merged, make sure to merge it first.

24


