
Week 9: Introduction to React

1

Agenda
Sett ing up a React app
Components
Event Callbacks
Hooks
CSS in React
Storybook
Demo

2

Setting up a React app
Vite

npm create vite@latest my-app -- --template react-ts (Preferred way)
Fast , f lexible and very responsive hot module reloading

CRA (Create React app)

npx create-react-app my-app --template typescript (Not really used anymore)

3

Bundling

Vite or CRA takes care of compiling and bundling your applicat ion

Project build includes:

Minif ied and opt imized JavaScript code (This is typically done using a tool like Webpack)
HTML f ile is generated that includes a reference to the minif ied JavaScript code
CSS f iles (CSS f iles are also bundled and included in the product ion build)
Stat is assets (images, fonts...)
More...

4

UI

UI is pretty much only a funct ion of the state of the applicat ion.
React automatically updates the UI to ref lect applicat ion changes
This is why React is often called a "declarat ive" framework, because you declare what your UI should look
like based on the current state of your applicat ion

5

Components

A way of split t ing the UI into independent , reusable pieces
Use funct ional way to create components and define an interface for its props

export const Component = (props: ComponentProps) => {

<p> {"Hello there"} </p>

}

First let ter of the component name must always be capitalized

6

Components

The React component lifecycle is a series of phases that a component goes through, from creat ion to
destruct ion.
During the lifecycle, a component can be mounted, updated, and unmounted.
The lifecycle methods can be used to perform act ions at specif ic points in the component 's lifecycle.

7

Properties

props (short for propert ies) are a way to pass data from a parent component to a child component

function Greeting({ name }) {

return <h1>Hello, {name}!</h1>;

}

function App() {

return <Greeting name="John" />;

}

8

Rendering lists

Rendering a list of elements in React typically involves mapping over an array of data and generat ing a
new element for each item in the array
To ensure that each element in the list has a unique key, React requires that you provide a key prop for
each element .
This key prop ensures that should the data for one element change, we do not have to re-render the
ent ire list .

9

Rendering lists

function MyList({ items }) {

return (

 {items.map((item) => (

<li key={item.id}>{item.text}

))}

);

}

const myListItems = [

 { id: 1, text: "Item 1" },

 { id: 2, text: "Item 2" },

 { id: 3, text: "Item 3" },

];

10

Event callbacks

Funct ions that are executed when a specif ic event occurs in a React component , such as a button click
or a form submission
Typically defined as methods within the component class and are passed down to child components as
props
Can be used to update component state, t rigger side effects, or interact with APIs and other external
services

Examples

onClick , onMouseEnter , onMouseLeave , onChange , onSubmit

11

Event callbacks (OnClick)

function MyButton({ onClick }) {

return <button onClick={onClick}>Click me!</button>;

}

function MyComponent() {

function handleClick() {

console.log("Button clicked!");

 }

return <MyButton onClick={handleClick} />;

}

12

Event callbacks (OnChange)

function MyInput({ value, onChange }) {

return <input type="text" value={value} onChange={onChange} />;

}

function MyComponent() {

const [inputValue, setInputValue] = useState("");

function handleInputChange(event) {

setInputValue(event.target.value);

 }

return <MyInput value={inputValue} onChange={handleInputChange} />;

}

13

Hooks

Hooks are special funct ions that are aware of a component 's life cycle
React provides built-in hooks, but can create our own more complex hooks

When using hooks there are a few rules that you need to follow:

Only call hooks at the top level of the component
Only call hooks from React funct ions

Example hooks:

useState , useEffect , useRef , useMemo , useCallback

14

State hook

Essent ially a variable which needs to be dynamically rendered

const [state, setState] = useState<type>(initialValue)

Change the value only by using setState, as it also tells each component using the state to rerender

const [state, setState] = useState<number>(5)

setState(6);

setState(previousValue => previousValue + 1);

We can access previous value or set the new value direct ly

15

Effect hook

Lets you perform side effect when rendering
useEffect(func) is called at every render
useEffect(func, []) is called on mount
useEffect(func, [state]) is called whenever one of the listed states changes

It 's a good place to make API calls, and you will need it when fetching data from REST API

16

Effect hook

useEffect(() => {

// Effect callback

// Only called when 'foo' or 'goo' changes

return () => {

// Cleanup callback

// Called on unmount or before the effect callback is called because dependencies changed

 };

}, [foo, goo]);

Effect hook can also specify what happens when component is going to be unmounted

17

Ref hook

Built-in hook in React that allows you to create a mutable reference to a DOM element or to a value
The main use case for useRef is to access a DOM element without t riggering a re-render when its value
changes

function MyComponent() {

const inputRef = useRef(null);

function handleClick() {

 inputRef.current.focus();

 }

return (

<div>

<input type="text" ref={inputRef} />

<button onClick={handleClick}>Focus input</button>

</div>

);

}

18

Other hooks
UseMemo

It ' s quite similar to useEffect , but returns a value
Used to speed up and opt imize your app by storing the results of expensive funct ion calls by returning
the cached result when its dependencies don' t change between renders

const winner = useMemo(() => getWinner(board), [board]);

Use Callback

Specialized version of the useMemo hook, used for memoizing funct ions

const onBoardRestart = useCallback(() => {setBoard({});}, []);

19

CSS in React

Inline as in HTML
Inline with a style object
Import stylesheet as in HTML
CSS modules, similar to stylesheets, but styles are local
Libraries: MUI, Bootstrap, Tailwind

20

CSS in React (MUI)

import { Button, TextField } from "@material-ui/core";

function MyForm() {

return (

<form onSubmit={handleSubmit}>

<TextField label="Username" />

<TextField label="Password" type="password" />

<Button variant="contained" color="primary" type="submit">

 Submit

</Button>

</form>

);

}

21

CSS in React (Bootstrap)

import 'bootstrap/dist/css/bootstrap.min.css';

import { Button, Form, FormGroup, Label, Input } from 'reactstrap';

function MyForm() {

return (

<Form onSubmit={handleSubmit}>

<FormGroup>

<Label for="username">Username</Label>

<Input type="text" name="username" id="username" placeholder="Enter your username" />

</FormGroup>

<FormGroup>

<Label for="password">Password</Label>

<Input type="password" name="password" id="password" placeholder="Enter your password"

</FormGroup>

<Button color="primary" type="submit">

 Submit

</Button>

</Form>

);

}
22

CSS in React (Tailwind)

import 'tailwindcss/tailwind.css';

function App() {

return (

<nav className="bg-white shadow">

<div className="max-w-7xl mx-auto px-2 sm:px-6 lg:px-8">

<div className="flex items-center justify-between h-16">

<div className="flex-shrink-0">

</div>

</div>

</div>

</nav>);

23

Storybook

In some seminars we will use a tool called storybook
It is used for building isolated components, and it is perfect for learning to build components
You can install it by running npx sb init inside an exist ing project , but both demo and iterat ion will
have it installed beforehand
Use npm run storybook to start the storybook

24

Hands on: Demo

Download demo from Interact ive syllabus
Read readme.md

25

