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Micro-architectural Attacks

 Micro-architectural attacks are caused by:-
  

 Performance optimizations

 Inherent device properties

 Stronger attackers  
Security

Performance
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Cache Organisation

64 Sets

64 Bytes
32K L1d Cache
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Cache Covert Channels

Process P2Process P1

bit = message
while (bit[i] != ‘\0’)
If (bit == 1)

Load A1
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Cache Covert Channels

Statistically
Time A Loads Vs Time B Loads

Process P2Process P1

bit = message
while (bit[i] != ‘\0’)
If (bit == 1)

Load A1
p1

else
Load B1

p1
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Cache Covert Channels: Send Even 1

A0 Set

A1 Set

BO Set

BE Set
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Cache Covert Channels
 Indentifying 

 Cache Covert Channels are difficult
 Variety of Covert Channels : File, Time etc

 Quantifying
 Bit rate of communication : bps

 Elimination
 Careful design
 Seperation
 Studying characteristic of operations

 Rate of opening and closing of files
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Cache Timing Attacks
Flush + Reload Attack
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Copy On Write

 Child created is an exact replica of the parent process

 Page tables of the parent duplicated in the child

 New pages created only when parent (or child) modifies data

 Postpone copying of pages as much as possible, thus
optimizing performance

 Thus, common code sections (like libraries) would be 
shared across processes.

21 

• Making a copy of a process 
is called forking. 
– Parent (is the original) 

–  child (is the new process) 

• When fork is invoked, 
– child is an exact copy of 

parent 
• When fork is called all pages 

are shared between parent 
and child 

• Easily done by copying the 
parent s page tables 

Physical Memory 

Parent 
Page 
Table 

Child 
Page 
Table 

Virtual Addressing Advantage  
(easy to make copies of a process) 
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Copy On Write

Parent Child



@MilanPatnaik

Copy On Write

Parent Child

Parent Child
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Virtual Memory
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Virtual Memory
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Process Tree
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Interaction with LLC
  :
SSLEncryption()
  :

cache hits

  :
SSLEncryption()
  :ProcessesProcesses

Core 1Core 1

LLCLLC

Core 2Core 2

ProcessesProcesses

FAST
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Flush + Reload Attack

Part of an encryption algorithm

executed only when ei = 1

clflush Instruction

Takes an address as input.
Flushes that address from all caches
clflush (line 8) 

Flush+Reload Attack, Yuval Yarom and Katrina Falkner (https://eprint.iacr.org/2013/448.pdf)
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Flush + Reload Attack

ProcessesProcesses

Core 1Core 1

LLCLLC

Core 2Core 2

ProcessesProcesses
  :
SSLEncryption()
  :

  :
Clflush(line 8)
  :
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Flush + Reload Attack

flush

reload

access victim

attacker
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Flush + Reload Attack
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Flush + Reload Attack : Counter

• Do not use copy-on-write
– Implemented by cloud providers

• Permission checks for clflush
– Do we need clflush?

• Non-inclusive cache memories
– AMD
– Intel i9 versions

• Fuzzing Clocks
• Software Diversification

– Permute location of objects in memory (statically and dynamically)
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Cache Collision Attacks

• External Collision Attacks
– Prime + Probe Attack

• Internal Collision Attacks
– Time Driven Attacks
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Prime + Probe Attack

Core 1Core 1

Last Level CacheLast Level Cache

Core 2Core 2

VictimVictim

SMT 
Core

SMT 
Core

L1 Cache MemoryL1 Cache Memory

SpySpy

VictimVictim SpySpy

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

Set N-2

Set N-1
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Prime + Probe Attack
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Set 2

Set 3

While(1){
   for(each cache set){
     start = time();
     access all cache ways
     end = time();
     access_time = end – start
   }
   wait for some time
}
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Prime + Probe Attack

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

While(1){
   for(each cache set){
     start = time();
     access all cache ways
     end = time();
     access_time = end – start
   }
   wait for some time
}

Time taken by sets that have
victim data is more due to the cache
misses

PROBE
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Prime + Probe Attack
0 63

Each row is an iteration of the while loop; darker shades imply higher memory access time

Each block depicts one cache set access time
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Example Prime+Probe: Cryptography

char Lookup[] = {x, x, x, . . . x};

char RecvDecrypt(socket){
     char key = 0x12;
     char pt, ct;

     read(socket, &ct, 1);
     pt = Lookup[key ^ ct];
     return pt;
}

The attacker know the address of Lookup and the ciphertext (ct)
The memory accessed in Lookup depends on the value of key
Given the set number, one can identify bits of key ^ ct.

Key dependent memory accesses
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Example Prime+Probe: Keystroke Sniffing
• Keystroke -- interrupt -- kernel mode switch -- ISR execution -- add to keyboard 

buffer -- … -- return from interrupt

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3
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Example Prime+Probe: Keystroke Sniffing

• Regular disturbance seen in Probe Time Plot
• Period between disturbance used to predict passwords

Svetlana Pinet, Johannes C. Ziegler, and F.-Xavier Alario. 2016. Typing Is Writing: Linguistic Properties Modulate 
Typing Execution. Psychon Bull Rev 23, 6
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Cache Collision Attacks
Time Driven Attacks
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Time Driven Attacks

Victim Attacker
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Internal Collision : Cipher

Table Table

Part of a Cipher

P0 ,P4

If cache hit (less time) : If cache miss (more time):

00 KP  44 KP 

4P0P

0K 4K

4040

4400

PPKK

KPKP





4040

4400

PPKK

KPKP





Attacker
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Internal Collision : Cipher

T

P0

K0

T

P4

K4

Block Cipher

Random
P0  

     Cipher Text

P4Suppose 
(K0 = 00 and K4 = 50)

• P0 = 0, all other inputs are 

random

• Make N time measurements 

• Segregate into buckets 
based on value of P4

• Find average time of each 
bucket

• Find deviation of each 
average from overall 
average (DOM)

P4 Average 
Time

DOM

00 2945.3 1.8

10 2944.4 0.9

20 2943.7 0.2

30 2943.7 0.2

40 2944.8 1.3

50 2937.4 -6.3

60 2943.3 -0.2

70 2945.8 2.3

: : :

F0 2941.8 -1.7
Average : 2943.57
Maximum : -6.34040

PPKK 



@MilanPatnaik

Questions
Cache Attacks
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