
@MilanPatnaik

Microarchitectural Attack
Cache Based Attacks

Dr Milan Patnaik
Indian Institute of Technology Madras, India
Rashtriya Raksha University, India

@MilanPatnaik

Outline
 Cache Timing Attacks.

 Cache Covert Channel.

 Flush + Reload Attack

 Cache Collision Attacks.
 Prime + Probe Attack
 Time Driven Attacks

 Transient Micro-architectural Attacks.
 Meltdown
 Spectre

@MilanPatnaik

Outline
 Cache Timing Attacks.

 Cache Covert Channel.

 Flush + Reload Attack

 Cache Collision Attacks.
 Prime + Probe Attack
 Time Driven Attacks

 Transient Micro-architectural Attacks.
 Meltdown
 Spectre

@MilanPatnaik

Security
 Cryptography
 Passwords
 Information Flow Policies
 Privileged Rings
 ASLR
 Virtual Machines and confinement
 Javascript and HTML5

(due to restricted access to system resources)

 Enclaves (SGX and Trustzone)

@MilanPatnaik

Security
 Cryptography
 Passwords
 Information Flow Policies
 Privileged Rings
 ASLR
 Virtual Machines and confinement
 Javascript and HTML5

(due to restricted access to system resouces)

 Enclaves (SGX and Trustzone)

Cache timing attackCache timing attack

Branch prediction attackBranch prediction attack

Speculation AttacksSpeculation Attacks

Row hammerRow hammer

Fault Injection AttacksFault Injection Attacks

Cold boot attacksCold boot attacks

DRAM Row buffer (DRAMA)DRAM Row buffer (DRAMA)

@MilanPatnaik

Micro-architectural Attacks

 Micro-architectural attacks are caused by:-


 Performance optimizations

 Inherent device properties

 Stronger attackers
Security

Performance

@MilanPatnaik

Cache Timing Attacks
Cache Covert Channels

@MilanPatnaik

Cache Organisation

@MilanPatnaik

Cache Organisation

@MilanPatnaik

Cache Organisation

@MilanPatnaik

Cache Organisation

@MilanPatnaik

Cache Organisation

@MilanPatnaik

Cache Organisation

64 Sets

64 Bytes
32K L1d Cache

@MilanPatnaik

Cache Covert Channels

Process P2

@MilanPatnaik

Cache Covert Channels

Process P2

Cache Miss Set A

@MilanPatnaik

Cache Covert Channels

Process P2

Cache Miss Set B

@MilanPatnaik

Cache Covert Channels

Statistically
Time A Loads ~ Time B Loads

Process P2

@MilanPatnaik

Cache Covert Channels

Statistically
Time A Loads ~ Time B Loads

Process P2Process P1

If (bit == 1)
Load A1

p1

else
Load B1

p1

@MilanPatnaik

Cache Covert Channels

Process P2Process P1

If (bit == 1)
Load A1

p1

else
Load B1

p1

@MilanPatnaik

Cache Covert Channels

Process P2Process P1

If (bit == 1)
Load A1

p1

else
Load B1

p1

@MilanPatnaik

Cache Covert Channels

Process P2Process P1

If (bit == 1)
Load A1

p1

else
Load B1

p1

@MilanPatnaik

Cache Covert Channels

Statistically
Time A Loads > Time B Loads

Process P2Process P1

If (bit == 1)
Load A1

p1

else
Load B1

p1

@MilanPatnaik

Cache Covert Channels

Process P2Process P1

If (bit == 1)
Load A1

p1

else
Load B1

p1

@MilanPatnaik

Cache Covert Channels

Statistically
Time A Loads < Time B Loads

Process P2Process P1

If (bit == 1)
Load A1

p1

else
Load B1

p1

@MilanPatnaik

Cache Covert Channels

Process P2Process P1

bit = message
while (bit[i] != ‘\0’)
If (bit == 1)

Load A1
p1

else
Load B1

p1

@MilanPatnaik

Cache Covert Channels

Statistically
Time A Loads Vs Time B Loads

Process P2Process P1

bit = message
while (bit[i] != ‘\0’)
If (bit == 1)

Load A1
p1

else
Load B1

p1

@MilanPatnaik

Cache Covert Channels: Send Even 1

A0 Set

A1 Set

BO Set

BE Set

@MilanPatnaik

Cache Covert Channels
 Indentifying

 Cache Covert Channels are difficult
 Variety of Covert Channels : File, Time etc

 Quantifying
 Bit rate of communication : bps

 Elimination
 Careful design
 Seperation
 Studying characteristic of operations

 Rate of opening and closing of files

@MilanPatnaik

Cache Timing Attacks
Flush + Reload Attack

@MilanPatnaik

Copy On Write

 Child created is an exact replica of the parent process

 Page tables of the parent duplicated in the child

 New pages created only when parent (or child) modifies data

 Postpone copying of pages as much as possible, thus
optimizing performance

 Thus, common code sections (like libraries) would be
shared across processes.

21

• Making a copy of a process
is called forking.
– Parent (is the original)

– child (is the new process)

• When fork is invoked,
– child is an exact copy of

parent
• When fork is called all pages

are shared between parent
and child

• Easily done by copying the
parent s page tables

Physical Memory

Parent
Page
Table

Child
Page
Table

Virtual Addressing Advantage
(easy to make copies of a process)

@MilanPatnaik

Copy On Write

Parent Child

@MilanPatnaik

Copy On Write

Parent Child

Parent Child

@MilanPatnaik

Process Tree
init

 :
SSLEncryption()
 :

 :
SSLEncryption()
 :

Virtual Memory
(process 1)

Virtual Memory
(process 2)

Process Tree

@MilanPatnaik

Process Tree
init

 :
SSLEncryption()
 :

 :
SSLEncryption()
 :

Virtual Memory
(process 1)

Virtual Memory
(process 2)

SSLEncryption()

Physical Memory

Process Tree

@MilanPatnaik

Process Tree
init

 :
SSLEncryption()
 :

 :
SSLEncryption()
 :

Virtual Memory
(process 1)

Virtual Memory
(process 2)

SSLEncryption()

Physical Memory

Process Tree

@MilanPatnaik

Interaction with LLC

ProcessesProcesses

Core 1Core 1

LLCLLC

 :
SSLEncryption()
 :

cache misses
Core 2Core 2

ProcessesProcesses

@MilanPatnaik

Interaction with LLC

ProcessesProcesses

Core 1Core 1

LLCLLC

 :
SSLEncryption()
 :

cache misses
Core 2Core 2

ProcessesProcesses

SLOW

@MilanPatnaik

Interaction with LLC
 :
SSLEncryption()
 :

cache hits

 :
SSLEncryption()
 :ProcessesProcesses

Core 1Core 1

LLCLLC

Core 2Core 2

ProcessesProcesses

@MilanPatnaik

Interaction with LLC
 :
SSLEncryption()
 :

cache hits

 :
SSLEncryption()
 :ProcessesProcesses

Core 1Core 1

LLCLLC

Core 2Core 2

ProcessesProcesses

FAST

@MilanPatnaik

Flush + Reload Attack

Part of an encryption algorithm

executed only when ei = 1

clflush Instruction

Takes an address as input.
Flushes that address from all caches
clflush (line 8)

Flush+Reload Attack, Yuval Yarom and Katrina Falkner (https://eprint.iacr.org/2013/448.pdf)

@MilanPatnaik

Flush + Reload Attack

ProcessesProcesses

Core 1Core 1

LLCLLC

Core 2Core 2

ProcessesProcesses
 :
SSLEncryption()
 :

 :
Clflush(line 8)
 :

@MilanPatnaik

Flush + Reload Attack

flush

reload

access victim

attacker

@MilanPatnaik

Flush + Reload Attack

@MilanPatnaik

Flush + Reload Attack : Counter

• Do not use copy-on-write
– Implemented by cloud providers

• Permission checks for clflush
– Do we need clflush?

• Non-inclusive cache memories
– AMD
– Intel i9 versions

• Fuzzing Clocks
• Software Diversification

– Permute location of objects in memory (statically and dynamically)

@MilanPatnaik

Cache Collision Attacks
Prime + Probe Attack

@MilanPatnaik

Cache Collision Attacks

• External Collision Attacks
– Prime + Probe Attack

• Internal Collision Attacks
– Time Driven Attacks

@MilanPatnaik

Prime + Probe Attack

Core 1Core 1

Last Level CacheLast Level Cache

Core 2Core 2

VictimVictim

SMT
Core

SMT
Core

L1 Cache MemoryL1 Cache Memory

SpySpy

VictimVictim SpySpy

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

Set N-2

Set N-1

@MilanPatnaik

Prime + Probe Attack

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

While(1){
 for(each cache set){
 start = time();
 access all cache ways
 end = time();
 access_time = end – start
 }
 wait for some time
}

@MilanPatnaik

Prime + Probe Attack

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

While(1){
 for(each cache set){
 start = time();
 access all cache ways
 end = time();
 access_time = end – start
 }
 wait for some time
}

@MilanPatnaik

Prime + Probe Attack

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

While(1){
 for(each cache set){
 start = time();
 access all cache ways
 end = time();
 access_time = end – start
 }
 wait for some time
}

PRIME

@MilanPatnaik

Prime + Probe Attack

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

While(1){
 for(each cache set){
 start = time();
 access all cache ways
 end = time();
 access_time = end – start
 }
 wait for some time
}

@MilanPatnaik

Prime + Probe Attack

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

While(1){
 for(each cache set){
 start = time();
 access all cache ways
 end = time();
 access_time = end – start
 }
 wait for some time
}

@MilanPatnaik

Prime + Probe Attack

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

While(1){
 for(each cache set){
 start = time();
 access all cache ways
 end = time();
 access_time = end – start
 }
 wait for some time
}

PROBE

@MilanPatnaik

Prime + Probe Attack

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

While(1){
 for(each cache set){
 start = time();
 access all cache ways
 end = time();
 access_time = end – start
 }
 wait for some time
}

Time taken by sets that have
victim data is more due to the cache
misses

PROBE

@MilanPatnaik

Prime + Probe Attack
0 63

Each row is an iteration of the while loop; darker shades imply higher memory access time

Each block depicts one cache set access time

@MilanPatnaik

Example Prime+Probe: Cryptography

char Lookup[] = {x, x, x, . . . x};

char RecvDecrypt(socket){
 char key = 0x12;
 char pt, ct;

 read(socket, &ct, 1);
 pt = Lookup[key ^ ct];
 return pt;
}

The attacker know the address of Lookup and the ciphertext (ct)
The memory accessed in Lookup depends on the value of key
Given the set number, one can identify bits of key ^ ct.

Key dependent memory accesses

@MilanPatnaik

Example Prime+Probe: Keystroke Sniffing
• Keystroke -- interrupt -- kernel mode switch -- ISR execution -- add to keyboard

buffer -- … -- return from interrupt

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

@MilanPatnaik

Example Prime+Probe: Keystroke Sniffing

• Regular disturbance seen in Probe Time Plot
• Period between disturbance used to predict passwords

Svetlana Pinet, Johannes C. Ziegler, and F.-Xavier Alario. 2016. Typing Is Writing: Linguistic Properties Modulate
Typing Execution. Psychon Bull Rev 23, 6

@MilanPatnaik

Cache Collision Attacks
Time Driven Attacks

@MilanPatnaik

Time Driven Attacks

Victim Attacker

@MilanPatnaik

Internal Collision : Cipher

Table Table

Part of a Cipher

P0 ,P4

If cache hit (less time) : If cache miss (more time):

00 KP  44 KP 

4P0P

0K 4K

4040

4400

PPKK

KPKP





4040

4400

PPKK

KPKP





Attacker

@MilanPatnaik

Internal Collision : Cipher

T

P0

K0

T

P4

K4

Block Cipher

Random
P0

 Cipher Text

P4Suppose
(K0 = 00 and K4 = 50)

• P0 = 0, all other inputs are

random

• Make N time measurements

• Segregate into buckets
based on value of P4

• Find average time of each
bucket

• Find deviation of each
average from overall
average (DOM)

P4 Average
Time

DOM

00 2945.3 1.8

10 2944.4 0.9

20 2943.7 0.2

30 2943.7 0.2

40 2944.8 1.3

50 2937.4 -6.3

60 2943.3 -0.2

70 2945.8 2.3

: : :

F0 2941.8 -1.7
Average : 2943.57
Maximum : -6.34040

PPKK 

@MilanPatnaik

Questions
Cache Attacks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

