
@MilanPatnaik

REVERSE ENGINEERING



@MilanPatnaik

AGENDA

 Lab 0 : Reversing an ARM binary

 Find the patch logic using GDB

 Using Ghidra and Hopper to understand ARM binaries.

 Lab 1: Reversing an ARM binary

 Find the patch logic using GDB.

 Create a patch and run in GDB.



@MilanPatnaik

REVERSING BINARY : LAB1



@MilanPatnaik

REVERSE ENGINEERING : GDB

 Reverse engineer binary ‘rev1’ to print “Yes, xx is correct” by 
giving any value in input.

   gcc -o rev1 rev1.c



@MilanPatnaik

REVERSE ENGINEERING : GDB

 Step 1 : Learn about the binary type.



@MilanPatnaik

REVERSE ENGINEERING : GDB

 Step 2 : Disassemble the binary



@MilanPatnaik

REVERSE ENGINEERING : GDB

 Step 3 : Run the binary



@MilanPatnaik

REVERSE ENGINEERING : GDB

 Step 4 : Inspect assembly in GDB/Ghidra/Hopper/BinaryNinja

 Step 5 : Find the patch logic

 Step 6 : Create a patched file



@MilanPatnaik

REVERSING BINARY : LAB2



@MilanPatnaikREVERSE ENGINEERING : 
GHIDRA

 Reverse engineer binary ‘challenge1’ and understand the 
program logic.

 Find the patch logic to print “You won !!” by giving any arbitrary 
value as input.

 Create a patched binary using Ghidra/Hopper/BinaryNinja.

Note: 

Ghidra Commands
https://ghidra-sre.org/CheatSheet.html
Patching Ghidra 
https://materials.rangeforce.com/tutorial/2020/04/12/Patching-Binaries/

https://ghidra-sre.org/CheatSheet.html


@MilanPatnaik

HOMEWORK 3

[EASY] (3 marks)

Crack the binary rev2 and generate a patched version as rev2_patched. Explain the 

logic of the password by creating the code rev2.c.

[NOT EASY]  (2 marks).

Crack the binary challenge2 by reverse engineering and explain a way to print 

"Access granted enjoy".

[HARD](bonus 1 mark)

Crack the binary challenge2 and generate a patched version as 

challenge2_patched to print "Access granted enjoy" on giving any arbitrary inputs.



@MilanPatnaik

Questions
Reverse Engineering


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

