
https://crocs.fi.muni.cz @CRoCS_MUNI

PV204 Security technologies

LABS: Secure Channels

Petr Švenda svenda@fi.muni.cz

Faculty of Informatics, Masaryk University

mailto:svenda@fi.muni.cz

https://crocs.fi.muni.cz @CRoCS_MUNI

TASK: BUILDING SECURE CHANNEL

PROTOCOL

4 PV204 | LAB: Secure channels

https://crocs.fi.muni.cz @CRoCS_MUNI

Task: Building Secure Channel protocol

• Scenario: we like to transfer extrasupersensitive data between PC

and smartcard

• Simple protocol → design attack → fix it → iterate

– Participate in discussion

• Hints for the solution are at the end of these slides, but read only

after finishing the previous work

PV204 | LAB: Secure channels5

https://crocs.fi.muni.cz @CRoCS_MUNI

Place for protocol evolution drawing

7 PV204 | LAB: Secure channels

https://crocs.fi.muni.cz @CRoCS_MUNI

Building SCP – steps in solution

• Scenario: we like to transfer extrasupersensitive data between PC and smartcard

1. Simple message exchanged in plaintext

2. Encrypted by static symmetric key

3. Integrity protection using plain hash

4. Integrity protection using MAC (CBC-MAC,HMAC)

5. Counter/Hash chain for message freshness and semantic security

6. Authenticated encryption (AEAD) modes of operation (GCM…)

7. Authentication based on static key

8. Challenge response for fresh authentication

9. Session keys derived from master key(s)

10. Forward secrecy based on RSA/ECDH

11. Backward secrecy based in Ratcheting (frequent ECDH)

PV204 | LAB: Secure channels8

https://crocs.fi.muni.cz @CRoCS_MUNI

TASK: PROTOCOL DISADVANTAGES

12 PV204 | LAB: Secure channels

https://crocs.fi.muni.cz @CRoCS_MUNI

Group activity: methods for key establishment

• 3 people per group

• Write 1-3 disadvantages for each method

• Write into a mindmap with your group’s room
– https://miro.com/app/board/o9J_lQ8-4dQ=/

– (don’t cheat and don’t look at other mindmaps ;))

– At the end, we will collate all results into a single one

1. Derive from pre-shared secret (KDF)

2. Establish with help of trusted party (Kerberos, PKI)

3. Establish over insecure channel (Diffie-Hellman)

4. Establish over other (secure, but very low-capacity/high-latency) channel

5. Establish over non-eavesdropable channel (BB84)

PV204 | LAB: Secure channels13

https://miro.com/app/board/o9J_lQ8-4dQ=/

https://crocs.fi.muni.cz @CRoCS_MUNI

Collate together disadvantages

• Visit green highlighted mindmap at the bottom

• Start pasting your disadvantages (if not yet there)

• Start from the item corresponding to your room number (to avoid

collisions), then move linearly forward

• See what we will get together!

15 PV204 | LAB: Secure channels

https://crocs.fi.muni.cz @CRoCS_MUNI

TASK: ANALYZE GENERATED CODE

FROM NOISE FRAMEWORK

16 PV204 | LAB: Secure channels

https://crocs.fi.muni.cz @CRoCS_MUNI

Task: Analyze code of Noise framework

• Group of three

• Visit https://noiseexplorer.com/, understand patterns naming convention, pattern modifiers

• Find required pattern

• Use any text diff to compare and see the difference in implementations

– Pick GO implementations (easier to check by diff)

– If you will pick Rust, the relevant file is state.rs (write_message_?() and read_message_?() functions)

17 PV204 | LAB: Secure channels

type handshakestate struct {

ss symmetricstate /*AEAD cipher state*/

s keypair /*own long-term static ECDH share */

e keypair /*own ephemeral ECDH share */

rs [32]byte /*received long-term static ECDH share*/

re [32]byte /*received phemeral ECDH share*/

psk [32]byte /*preshared symmetric key*/

}

https://noiseexplorer.com/

https://crocs.fi.muni.cz @CRoCS_MUNI18 PV204 | LAB: Secure channels

/* ---------------------------------- *
* TYPES *
* ---------------------------------- */

type keypair struct {
public_key [32]byte
private_key [32]byte

}

type messagebuffer struct {
ne [32]byte // new ephm. share
ns []byte
ciphertext []byte

}

type cipherstate struct {
k [32]byte // key
n uint32 // nonce

}

type symmetricstate struct {
cs cipherstate // AEAD state (key and nonce)
ck [32]byte // chaining key
h [32]byte // hash of handshake

}
type handshakestate struct {

ss symmetricstate
s keypair // local static key pair
e keypair // local ephemeral key pair
rs [32]byte // remote party’s static key
re [32]byte // remote party’s ephemeral key
psk [32]byte // pre-shared symmetric key

}
type noisesession struct {

hs handshakestate
h [32]byte // handshake hash (unique for session)
cs1 cipherstate // cipherstate for the outgoing comm.
cs2 cipherstate // cipherstate for the incoming comm.
mc uint64 // incremental message counter
i bool // True if this node is initiator

}

https://noiseprotocol.org/noise.pdf Chapter 5

Important: not all items are

used in all protocol patterns

https://noiseprotocol.org/noise.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

Important: single source file for both parties

• Initiator (A) and responder (B)

• Not all functions will be used by both parties

• noisesession.i bool // True if this node is initiator

• When executed, you need to specify who is intiator

– Initiator (A) will use writeMessageA, readMessageB…

– Responder (B) will use readMessageA, writeMessageB…

19 PV204 | LAB: Secure channels

https://crocs.fi.muni.cz @CRoCS_MUNI

func writeMessageA(hs *handshakestate, payload []byte) (*handshakestate, messagebuffer) {
ne, ns, ciphertext := emptyKey, []byte{}, []byte{}
hs.e = generateKeypair()
ne = hs.e.public_key
mixHash(&hs.ss, ne[:])
/* No PSK, so skipping mixKey */
_, ciphertext = encryptAndHash(&hs.ss, payload)
messageBuffer := messagebuffer{ne, ns, ciphertext}
return hs, messageBuffer

}

func writeMessageB(hs *handshakestate, payload []byte) ([32]byte, messagebuffer, cipherstate, cipherstate) {
ne, ns, ciphertext := emptyKey, []byte{}, []byte{}
hs.e = generateKeypair()
ne = hs.e.public_key
mixHash(&hs.ss, ne[:])
/* No PSK, so skipping mixKey */
mixKey(&hs.ss, dh(hs.e.private_key, hs.re))
_, ciphertext = encryptAndHash(&hs.ss, payload)
messageBuffer := messagebuffer{ne, ns, ciphertext}
cs1, cs2 := split(&hs.ss)
return hs.ss.h, messageBuffer, cs1, cs2

}

func writeMessageRegular(cs *cipherstate, payload []byte) (*cipherstate, messagebuffer) {
ne, ns, ciphertext := emptyKey, []byte{}, []byte{}
cs, ciphertext = encryptWithAd(cs, []byte{}, payload)
messageBuffer := messagebuffer{ne, ns, ciphertext}
return cs, messageBuffer

}

20 PV204 | LAB: Secure channels

Important: writeMessage() takes

also optional arbitrary payload

atop of key exchange data. Is

encrypted by AEAD if needed

Generate ephemeral keypair

Read own ECDH public key

Hash it into key state

AEAD of payload (optional)

Format whole message

Similarly, readMessageA(),

readMessageB,

readMessageRegular() methods

are used to process received

inputs from writeMessageA()…

readMessageA()

readMessageB()

readMessageRegular()

https://crocs.fi.muni.cz @CRoCS_MUNI

NN vs. NX protocol pattern

21 PV204 | LAB: Secure channels

https://noiseprotocol.org/noise.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

Protocols to analyze

• Find pattern corresponding to non-authenticated ephemeral ECDH from both sides

• Find pattern, where both parties share long-term ECDH share and update with fresh

ephemeral one

• Find pattern where responder has long-term static ECDH share, pre-shared with initiator

– Corresponding to 0-RTT of data send from client to server with pre-shared static share of server’s key

• For every protocol: Find parameters chosen for implementation of a protocol

– What hash and cipher algorithms were used?

– What elliptic curve is used?

• For every protocol: look at functions writeMessageA, writeMessageB…

– What is hashed/mixed into shared state?

– What is encrypted (AEAD) before send?

• How can you utilize pre-shared password if exists? (read https://noiseprotocol.org/noise.pdf)

23 PV204 | LAB: Secure channels

https://noiseprotocol.org/noise.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

NO HOMEWORK ASSIGNMENT THIS

WEEK ☺

PV204 | LAB: Secure channels 25

https://crocs.fi.muni.cz @CRoCS_MUNI

CHECK-OUT

26 PV204 | LAB: Secure channels

https://crocs.fi.muni.cz @CRoCS_MUNI

Checkout

• Which of the seminar parts you enjoyed most?

• Rank it according the level of enjoyment (most enjoyable => first)

• Write to sli.do when displayed

27 PV204 | LAB: Secure channels

https://crocs.fi.muni.cz @CRoCS_MUNI28 PV204 | LAB: Secure channels

PV204_02 Rank the topics covered today based on the

level of enjoyment

ⓘ Start presenting to display the poll results on this slide.

https://crocs.fi.muni.cz @CRoCS_MUNI

THANK YOU FOR COMING, SEE YOU

NEXT WEEK

29 PV204 | LAB: Secure channels

https://crocs.fi.muni.cz @CRoCS_MUNI30 PV204 | LAB: Secure channels

https://crocs.fi.muni.cz @CRoCS_MUNI

SOLUTIONS – KIND OF ☺

READ ONLY AFTER THE SEMINAR

DISCUSSION

PV204 | LAB: Secure channels31

https://crocs.fi.muni.cz @CRoCS_MUNI

READ ONLY AFTER THE

SEMINAR DISCUSSION!
PV204 | LAB: Secure channels32

https://crocs.fi.muni.cz @CRoCS_MUNI

Building SCP – steps in solution

• Scenario: we like to transfer extrasupersensitive data between PC and smartcard

1. Simple exchange in plaintext

2. Encrypted by static symmetric key

3. Integrity protection using plain hash

4. Integrity protection using MAC (CBC-MAC,HMAC)

5. Counter/Hash chain for message freshness and semantic security

6. Authenticated encryption (AEAD) modes of operation (GCM…)

7. Authentication based on static key

8. Challenge response for fresh authentication

9. Session keys derived from master key(s)

10. Forward secrecy based on RSA/DH

11. Backward secrecy based in Ratcheting (frequent ECDH)

PV204 | LAB: Secure channels33

https://crocs.fi.muni.cz @CRoCS_MUNI

Building SCP – steps in solution

1. Simple exchange in plaintext

– Many problems, attacker can eavesdrop sensitive data

2. Encrypted by static symmetric key

– Attacker can modify sensitive data (no integrity)

3. Integrity protection using plain hash

– Hash is not enough, attacker can modify then recompute hash

4. Integrity protection using MAC (CBC-MAC,HMAC)

– Attacker can replay older message (no freshness)

PV204 | LAB: Secure channels34

https://crocs.fi.muni.cz @CRoCS_MUNI

Building SCP – steps in solution

5. Counter/hash chain for message freshness and semantic

security

– No explicit authentication of parties

6. Authenticated encryption (AEAD) modes

– Secure composition of ENC and MAC. Currently GCM, but soon to

finish CAESAR competition with

7. Authentication based on static key

– Authentication message can be replayed from previous legit run

8. Challenge response for fresh authentication

– Single static key can cause problems

• Interchange of encrypted message and valid MAC

• Large amount of data encrypted under same key (cryptoanalysis)

PV204 | LAB: Secure channels35

https://crocs.fi.muni.cz @CRoCS_MUNI

Building SCP – steps in solution

9. Session keys derived from master key(s)

– If master keys are compromised, older captured communication can be decrypted

10. Forward secrecy based on RSA/DH

– Future messages can read after compromise

– Key has to be kept for a long time for out-of-order messages

11. Backward secrecy based on ratcheting

– Secure?

– Key management with multiple parties?

– Proof of message origin? Deniability?

– … gather your requirements!

PV204 | LAB: Secure channels36

	Slide 1: PV204 Security technologies
	Slide 4: Task: Building secure channel protocol
	Slide 5: Task: Building Secure Channel protocol
	Slide 7: Place for protocol evolution drawing
	Slide 8: Building SCP – steps in solution
	Slide 12: Task: Protocol disadvantages
	Slide 13: Group activity: methods for key establishment
	Slide 15: Collate together disadvantages
	Slide 16: Task: Analyze generated code from Noise framework
	Slide 17: Task: Analyze code of Noise framework
	Slide 18
	Slide 19: Important: single source file for both parties
	Slide 20: func writeMessageA(hs *handshakestate, payload []byte) (*handshakestate, messagebuffer) { ne, ns, ciphertext := emptyKey, []byte{}, []byte{} hs.e = generateKeypair() ne = hs.e.public_key mixHash(&hs.ss, ne[:])
	Slide 21: NN vs. NX protocol pattern
	Slide 23: Protocols to analyze
	Slide 25: No homework assignment this week
	Slide 26: Check-out
	Slide 27: Checkout
	Slide 28
	Slide 29: Thank you for coming, see you next Week
	Slide 30
	Slide 31: Solutions – kind of Read only after the seminar discussion
	Slide 32: Read only after the seminar discussion!
	Slide 33: Building SCP – steps in solution
	Slide 34: Building SCP – steps in solution
	Slide 35: Building SCP – steps in solution
	Slide 36: Building SCP – steps in solution

