
www.crcs.cz/rsa @CRoCS_MUNI

PV204 Security technologies

Trusted element, side channels attacks

Łukasz Chmielewski chmiel@fi.muni.cz

Centre for Research on Cryptography and Security, Masaryk University

www.crcs.cz/rsa @CRoCS_MUNI

The masterplan for this lab

1. Project, teams

2. Implementation of modular exponentiation (RSA)

3. Understand naïve and square&multiply algorithm

– Toy example with integers (32 bits)

4. Understand how to measure operation (clock())

– Pre-prepared functions – console or file output

– Visualization of multiple measurements (R, http://plot.ly, matplotlib...)

• Online:

– http://www.shodor.org/interactivate/activities/Histogram/

– https://www.aatbio.com/tools/online-histogram-maker

– What can be inferred from measurements

5. Use large datatype MPI instead of int (> 102 bits)

6. Understand blinding as a protection technique

7. Assignment

2 | PV204 TE, Side-channels LAB 05.04.2023

http://plot.ly/
http://www.shodor.org/interactivate/activities/Histogram/
https://www.aatbio.com/tools/online-histogram-maker

www.crcs.cz/rsa @CRoCS_MUNI

Faster modexp: Square and multiply algorithm

• How to measure?

– Exact detection from simple power trace

– Extraction from overall time of multiple measurements

| PV204 TE, Side-channels LAB 05.04.20233

Gilbert Goodwill, http://www.embedded.com/print/4408435

// M = C^d mod N
// Square and multiply algorithm

x = C // start with ciphertext

for j = 1 to n { // process all bits of private exponent

x = x*x mod N // shift to next bit by x * x (always)

if (d_j == 1) { // j-th bit of private exponent d

x = x*C mod N // if 1 then multiple by Ciphertext

}
}
return x // plaintext M

E
x
e
c
u
te

d
 o

n
ly

w
h
e
n
 d

_
j
=

=
 1

Executed always

www.crcs.cz/rsa @CRoCS_MUNI

Naïve vs. square and multiply algorithm

• SideChannelExercise.zip source code from IS

• Inspect naïve and square&multiply algorithm

– Limited to integers (unsigned long) for simplicity

• Measure timings

– Pre-prepared measurement functions

• measureExponentiation()

– clock() used for measurement (usually 1ms granularity)

• measureExponentiationRepeat()

– Make defined number of repeats and stores results into file

• Identify dependency of algorithm on secret value

4 | PV204 TE, Side-channels LAB 05.04.2023

www.crcs.cz/rsa @CRoCS_MUNI

Setup

• Create new Visual Studio 2015 Project (or newer)

– File->New->Project->VisualC++->Win32 Console app

– Turn off ‘Precompiled header’ and ‘SDL checks’

• Paste SideChannelExercise.cpp from IS instead of project’s main file

• Copy all remaining files into the directory where stdafx.cpp is

• Add bignum.c into compilation

– Solution->Source files->Add->Existing item

• Try to compile

• Insert breakpoint (begin of main()) – F9

• Run program in debug mode – F5

• Execute the next step of the program – F10

5 | PV204 TE, Side-channels LAB 05.04.2023

www.crcs.cz/rsa @CRoCS_MUNI

Naïve modular exponentiation algorithm

• What is disadvantage of this algorithm?

• Is algorithm vulnerable to timing side-channel?

• Is algorithm vulnerable to another side-channel?

6 | PV204 TE, Side-channels LAB 05.04.2023

typedef unsigned long ULONG;
const int ULONG_LENGTH = sizeof(ULONG);

ULONG naiveExponentiation(ULONG message, ULONG exponent, ULONG modulus) {
ULONG result = message;
for (int i = 1; i < exponent; i++) {

result *= message;
result %= modulus;

}

return result;
}

www.crcs.cz/rsa @CRoCS_MUNI7 | PV204 TE, Side-channels LAB 05.04.2023

typedef unsigned long ULONG;
const int ULONG_LENGTH = sizeof(ULONG);

ULONG squareAndMultiply(ULONG message, ULONG exponent, ULONG modulus) {
// Obtain effective length of exponent in bits

int sizeExponent = ULONG_LENGTH;
ULONG mask = 1;
ULONG bit = 0;
for (int i = 0; i < ULONG_LENGTH * 8; i++) {

bit = exponent & mask;
if (bit != 0) { sizeExponent = i + 1; }
mask <<= 1;

}
// Compute square and multiply algorithm

ULONG result = 1;
for (int i = sizeExponent - 1; i >= 0; i--) {

result *= result;
result %= modulus;
if ((exponent & (1 << i)) != 0) { // given bit is not 0

result *= message;
result %= modulus;

}
}
return result;

}

www.crcs.cz/rsa @CRoCS_MUNI

Pair activity: Analysis of square&multiply algorithm

• Form pairs (e.g., with your neighbour) [approximately 21 minutes]

• Look and code together (before ready to answer the question)

• Two roles:

– Educator – explains the answer to the given question to his/her pair

– Sceptic – tries to find any flaw or weak point in Educator’s reasoning

• Educator keep explaining until Sceptic can’t find any flaw

– not more than 3 mins per question

– Sceptic notes down interesting issues raised

• Switch roles after every question (from next slide)

| PV204 TE, Side-channels LAB 05.04.20238

www.crcs.cz/rsa @CRoCS_MUNI

Pair activity: Analysis of square&multiply algorithm

Pre-prepared function squareAndMultiply()

1. What is the advantage of this algorithm with respect to naïve algorithm?

2. Is int (ULONG) enough for cryptographic security?

3. Is the algorithm vulnerable to timing side-channel?

4. Which part of the code is dependent on secret value?

Pre-prepared function measureExponentiation(65535, 65535, 10000003L,

SQUAREANDMULTIPLY);

1. How is measured time depending on a secret value?

2. Is this algorithm easier or harder for attackers to mount timing attack wrt naïve exp?

3. How to mask dependency on secret exponent?

9 | PV204 TE, Side-channels LAB 05.04.2023

www.crcs.cz/rsa @CRoCS_MUNI

Big integers (MPI from mbedTLS library)

• 32 bits are not enough, 4096 is recommended (RSA)

– No native type in C/C++, use mbedTLS’s MPI

10 | PV204 TE, Side-channels LAB 05.04.2023

void squareAndMultiplyMPI(const mpi* message, const mpi* exponent, const mpi* modulus,
mpi* result) {

// Obtain length of exponent in bits

int sizeExponent = 0;
int maxBitLength = mpi_size(exponent) * 8;
for (int i = 0; i < maxBitLength; i++) {

if (mpi_get_bit(exponent, i) != 0) { sizeExponent = i + 1; }
}
// Compute square and multiply algorithm

mpi_lset(result, 1);
for (int i = sizeExponent - 1; i >= 0; i--) {

mpi_mul_mpi(result, result, result); // result *= result;

mpi_mod_mpi(result, result, modulus); // result %= modulus;

if (mpi_get_bit(exponent, i) != 0) { // given bit is not 0

mpi_mul_mpi(result, result, message);
mpi_mod_mpi(result, result, modulus);

}
}}

www.crcs.cz/rsa @CRoCS_MUNI

Create large (pseudo-)random MPI

• generateRNG() is function callback to fill single int

11 | PV204 TE, Side-channels LAB 05.04.2023

mpi message; mpi_init(&message);
mpi exponent; mpi_init(&exponent);
mpi modulus; mpi_init(&modulus);

// Cryptographically large number (2048b)

const int NUMBER_SIZE = 256;
// Init with pseudorandom values (prng will always start with same value)

mpi_fill_random(&message, NUMBER_SIZE, generateRNG, NULL);
mpi_fill_random(&exponent, NUMBER_SIZE, generateRNG, NULL);
mpi_fill_random(&modulus, NUMBER_SIZE, generateRNG, NULL);
// Fix MSb and LSb of modulus to 1

modulus.p[0] |= 1; mpi_set_bit(&modulus, 1, 1);

measureExponentiationMPI(&message, &exponent, &modulus, SQUAREANDMULTIPLY);

www.crcs.cz/rsa @CRoCS_MUNI

Measure times with MPI

• Operation with large MPI can be measured

– 100-1000 cycles (up to 1 sec)

• Visualize histogram of multiple measurements

– Pre-prepared measurements functions with file output

• measureExponentiationRepeat()

– https://plot.ly (Histogram, Traces→Range/bins 1)

– pyplot, R…

• Try repeated measurement with the same data

• Try repeated measurement with the different data

• Are measured times constant? Why?

12 | PV204 TE, Side-channels LAB 05.04.2023

https://plot.ly/

www.crcs.cz/rsa @CRoCS_MUNI

Fix: Blinding

• Create squareAndMultiplyBlindedMPI() as improved version of

squareAndMultiplyMPI()

1. Generate random value r and compute re mod N

2. Compute blinded ciphertext b = c * re mod N

3. Decrypt b and then divide result by r

• (r is random number, but invertible mod N)

13 | PV204 TE, Side-channels LAB 05.04.2023

www.crcs.cz/rsa @CRoCS_MUNI

Defense introduced by OpenSSL

• RSA blinding: RSA_blinding_on()

– https://www.openssl.org/news/secadv_20030317.txt

• Decryption without protection: M = cd mod N

• Blinding of ciphertext c before decryption

1. Generate random value r and compute re mod N

2. Compute blinded ciphertext b = c * re mod N

3. Decrypt b and then divide result by r

• r is removed and only decrypted plaintext remains

14 | PV204 TE, Side-channels LAB 05.04.2023

https://www.openssl.org/news/secadv_20030317.txt

www.crcs.cz/rsa @CRoCS_MUNI15 | PV204 TE, Side-channels LAB 05.04.2023

www.crcs.cz/rsa @CRoCS_MUNI

Assignment 5: Protection via bogus branch
• Modify squareAndMultiplyMPI() code (use version without blinding)

– When exponent’s bit is not 1, add “bogus” branch as a protection against leakage

– Remember to have multiplications in both branches.

– Test correctness and submit the code with the report.

• Perform analysis on the original and protected version
– Timing measurements for 1000 measurements, visualize as histograms

– Scenario 1: Same data, same exponent; Scenario 2: Same exponent, low hamming weight of data;

– Scenario 3: Same exponent, the high hamming weight of data; Scenario 4: Low/high hw exponent and random data.

• Compile and evaluate in Debug and Release profiles
– Can you observe any difference? Why? What are security implications?

• IMPORTANT: Think! Some scenarios make sense. Some not.
– Make an explicit claim in the discussion of every scenario if it makes sense from a security point of view

• Final 10% (1 point): eliminate if statements by using memory accesses instead.

– Test correctness and submit the code with the report.

– Compare timing of that solution to the first implementation in the assignment. How does it compare?

• Reminder: 5 points for this exercise

17 | PV204 TE, Side-channels LAB 05.04.2023

if (mpi_get_bit(exponent, i) != 0) { …// given bit is not 0)

www.crcs.cz/rsa @CRoCS_MUNI

Assignment 5: Protection via bogus branch

18 | PV204 TE, Side-channels LAB 05.04.2023

www.crcs.cz/rsa @CRoCS_MUNI

Assignment 5 – what to submit

• Source code of your protected operation

• 2 pages of text and figures
– Describe how bogus branch is removing the dependency of execution time on the secret

exponent

– Description of setup (methodology, sw, hw)

– Visualized measurements (histograms, 4 scenarios)

– Discussion of difference observed

– Discussion of attack feasibility against original/protected implementation

• Max 1 page for final 10%: free format

• Submit before 13.4. 23:59am into IS HW vault
– Soft deadline: -1.5 points for every started 24 hours

19 | PV204 TE, Side-channels LAB 05.04.2023

www.crcs.cz/rsa @CRoCS_MUNI

Assignment – some hints

20 | PV204 TE, Side-channels LAB 05.04.2023

• Don't forget to precisely specify your configuration (platform, compiler, options used). Is someone to replicate your experiment

with the information you provided?

• It does make only little sense to compare the protected and unprotected version of code for a specific type of data (e.g., only

for low-hamming weight exponents). The protected version runs slower, but that is not an interesting observation. What is

interesting observation is if you can distinguish (for a particular implementation) between exponents with low and high

hamming weights respectively. If yes, then a leak is present.

• No assignment next week!

• Consultation will be on Wednesday morning:

– 9.30-11.00 in person in A406 or

– We make an appointment by email

www.crcs.cz/rsa @CRoCS_MUNI

Example vizualization (credits: J. Masarik)

21 | PV204 TE, Side-channels LAB 05.04.2023

	Slide 1: PV204 Security technologies
	Slide 2: The masterplan for this lab
	Slide 3: Faster modexp: Square and multiply algorithm
	Slide 4: Naïve vs. square and multiply algorithm
	Slide 5: Setup
	Slide 6: Naïve modular exponentiation algorithm
	Slide 7
	Slide 8: Pair activity: Analysis of square&multiply algorithm
	Slide 9: Pair activity: Analysis of square&multiply algorithm
	Slide 10: Big integers (MPI from mbedTLS library)
	Slide 11: Create large (pseudo-)random MPI
	Slide 12: Measure times with MPI
	Slide 13: Fix: Blinding
	Slide 14: Defense introduced by OpenSSL
	Slide 15
	Slide 17: Assignment 5: Protection via bogus branch
	Slide 18: Assignment 5: Protection via bogus branch
	Slide 19: Assignment 5 – what to submit
	Slide 20: Assignment – some hints
	Slide 21: Example vizualization (credits: J. Masarik)

