
Relevance feedback and query expansion (Chapter 9)
Definition 1 (Rocchio relevance feedback)
Rocchio relevance feedback has the form
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where 𝑞0 is the original query vector, 𝐷𝑟 is the set of relevant documents, 𝐷𝑛𝑟 is the set
of non-relevant documents and the values 𝛼, 𝛽, 𝛾 depend on the system setting.

Exercise 9/1
What is the main purpose of Rocchio relevance feedback?

Answers can vary. For official definition refer to the Manning book.

Exercise 9/2
A user’s primary query is cheap CDs cheap DVDs extremely cheap CDs. The user has
a look on two documents: doc1 a doc2, marking doc1 CDs cheap software cheap CDs
as relevant and doc2 cheap thrills DVDs as non-relevant. Assume that we use a simple
tf scheme without vector length normalization. What would be the restructured query
vector after considering the Rocchio relevance feedback with values 𝛼 = 1, 𝛽 = 0.75, and
𝛾 = 0.25?

We rewrite the exercise to the table for an easier processing.

relevant non-relevant
terms doc1 doc2 query
CDs 2 0 2
cheap 2 1 3
software 1 0 0
thrills 0 1 0
DVDs 0 1 1
extremely 0 0 1

Table 1:

Now we mark the input of the algorithm by Definition 1.
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By filling the values to the formula for 𝑞𝑚 we get
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Text classification and Naive Bayes (Chapter 13)
Definition 2 (Naive Bayes Classifier)
Naive Bayes (NB) Classifier assumes that the effect of the value of a predictor 𝑥 on a given
class 𝑐 is class conditional independent. Bayes theorem provides a way of calculating the
posterior probability 𝑃 (𝑐|𝑥) from class prior probability 𝑃 (𝑐), predictor prior probability
𝑃 (𝑥) and probability of the predictor given the class 𝑃 (𝑥|𝑐)

𝑃 (𝑐|𝑥) = 𝑃 (𝑥|𝑐)𝑃 (𝑐)
𝑃 (𝑥)

and for a vector of predictors 𝑋 = (𝑥1, . . . , 𝑥𝑛)

𝑃 (𝑐|𝑋) = 𝑃 (𝑥1|𝑐) . . . 𝑃 (𝑥𝑛|𝑐)𝑃 (𝑐)
𝑃 (𝑥1) . . . 𝑃 (𝑥𝑛) .

The class with the highest posterior probability is the outcome of prediction.

Exercise 13/1
What is naive about Naive Bayes classifier? Briefly outline its major idea.

Answers can vary. For official definition refer to the Manning book.

Exercise 13/2
Considering the table of observations, use the Naive Bayes classifier to recommend
whether to Play Golf given a day with Outlook = Rainy, Temperature = Mild, Humidity
= Normal and Windy = True. Do not deal with the zero-frequency problem.
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Outlook Temperature Humidity Windy Play Golf
Rainy Hot High False No
Rainy Hot High True No

Overcast Hot High False Yes
Sunny Mild High False Yes
Sunny Cool Normal False Yes
Sunny Cool Normal True No

Overcast Cool Normal True Yes
Rainy Mild High False No
Rainy Cool Normal False Yes
Sunny Mild Normal False Yes
Rainy Mild Normal True Yes

Overcast Mild High True Yes
Overcast Hot Normal False Yes
Sunny Mild High True No

Table 2: Exercise.

First build the likelihood tables for each predictor

Play Golf
Yes No

Outlook
Sunny 3/9 2/5 5/14
Overcast 4/9 0/5 4/14
Rainy 2/9 3/5 5/14

9/14 5/14

Play Golf
Yes No

Temperature
Hot 2/9 2/5 4/14
Mild 4/9 2/5 6/14
Cool 3/9 1/5 4/14

9/14 5/14

Play Golf
Yes No

Humidity High 3/9 4/5 7/14
Normal 6/9 1/5 7/14

9/14 5/14

Play Golf
Yes No

Windy True 3/9 2/5 5/14
False 6/9 3/5 9/14

9/14 5/14

We see that probability of Sunny given Yes is 3/9 = 0.33, probability of Sunny is
5/14 = 0.36 and probability of Yes is 9/14 = 0.64. Then we count the likelihoods of Yes
and No

𝑃 (𝑌 𝑒𝑠|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) ∝
= 𝑃 (𝑅𝑎𝑖𝑛𝑦|𝑌 𝑒𝑠) · 𝑃 (𝑀𝑖𝑙𝑑|𝑌 𝑒𝑠) · 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙|𝑌 𝑒𝑠) · 𝑃 (𝑇𝑟𝑢𝑒|𝑌 𝑒𝑠) · 𝑃 (𝑌 𝑒𝑠)

= 2
9 · 4

9 · 6
9 · 3

9 · 9
14 = 0.014109347

𝑃 (𝑁𝑜|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) ∝
= 𝑃 (𝑅𝑎𝑖𝑛𝑦|𝑁𝑜) · 𝑃 (𝑀𝑖𝑙𝑑|𝑁𝑜) · 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙|𝑁𝑜) · 𝑃 (𝑇𝑟𝑢𝑒|𝑁𝑜) · 𝑃 (𝑁𝑜)

= 3
5 · 2

5 · 1
5 · 3

5 · 5
14 = 0.010285714

(1)

and suggest Yes. We can normalize the likelihoods to obtain the % confidence:

𝑃 (𝑌 𝑒𝑠|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) = 0.014109347
0.014109347 + 0.010285714 = 57.84%
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𝑃 (𝑁𝑜|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) = 0.010285714
0.014109347 + 0.010285714 = 42.16%

Definition 3 (A Linear Classifier)
Our linear classifier finds the hyperplane that bisects and is perpendicular to the connecting
line of the closest points from the two classes. The separating (decision) hyperplane is
defined in terms of a normal (weight) vector w and a scalar intercept term 𝑏 as

𝑓(𝑥) = w · x + 𝑏

where · is the dot product of vectors. Finally, the classifier becomes

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑠𝑔𝑛(𝑓(𝑥)).

Exercise 13/3
Draw a sketch explaining the concept of our linear classifier. Include the equation of the
separation hyperplane. Is our classifier equivalent to support vector machines (SVM)?
What are limitations of our classifier?

Answers can vary. For official definition refer to the Manning book.

Exercise 13/4
Build a linear classifier for the training set {([1, 1], −1), ([2, 0], −1), ([2, 3], +1)}.

We first take the closest two points from the respective classes: [1, 1] and [2, 3]. We have
w = 𝑎 · ([1, 1] − [2, 3]) = [𝑎, 2𝑎]. Now we calculate 𝑎 and 𝑏

𝑎 + 2𝑎 + 𝑏 = −1

2𝑎 + 6𝑎 + 𝑏 = 1

for the points [1, 1] and [2, 3], respectively. The solution is

𝑎 = 2
5 𝑏 = −11

5

building the weight vector

w =
[︂

2
5 ,

4
5

]︂
and the final classifier becomes

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑠𝑔𝑛

(︂
2
5𝑥1 + 4

5𝑥2 − 11
5

)︂
.

Exercise 13/5
Explain the concept of classification based on neural networks. Draw a sketch and
comment on all components.

Answers can vary. For official definition refer to the Manning book.
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Exercise 13/6
What is the difference between supervised and unsupervised learning? Give examples.

Answers can vary. For official definition refer to the Manning book.
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