👷 Introduction to Information Retrieval

Cross-modal retrieval and Web search basics 3. 5. 2023

Lecture

Lecture and discussion by Nicola Messina
Title: Transformer Networks for Cross-modal Retrieval

Abstract: Recently, cross-modal retrieval tasks - particularly
text-to-image and text-to-video retrieval - are obtaining a substantial
boost thanks to the incredible advance in image and text representations
through advanced deep learning networks. The core of this innovation
resides in the Transformer architecture, which lays down the basis for
processing all kinds of multimedia data (images, videos, text) in a common
elegant framework. This presentation will introduce the core ideas behind
Transformer and its use in cross-modal retrieval tasks, keeping both
efficiency and effectiveness in mind. It will give in-depth insights into
the Transformer-based feature representation and discuss how to perform
efficient k-nearest neighbor searches on large databases. Finally, this
presentation will show engaging real-world application scenarios and
current research directions.

Chyba: Odkazovaný objekt neexistuje nebo nemáte právo jej číst.
https://is.muni.cz/el/fi/jaro2023/PV211/um/2023-p19web.pdf

Readings

Chyba: Odkazovaný objekt neexistuje nebo nemáte právo jej číst.
https://is.muni.cz/el/fi/jaro2023/PV211/um/readings/19web.pdf

Seminar

Chyba: Odkazovaný objekt neexistuje nebo nemáte právo jej číst.
https://is.muni.cz/el/fi/jaro2023/PV211/um/seminars/week-12-mark-and-recapture.pdf
Web search basics
Exercise solution for seminars in the twelfth week
Chyba: Odkazovaný objekt neexistuje nebo nemáte právo jej číst.
https://is.muni.cz/el/fi/jaro2020/PV211/um/vi/2020-05-13_exercise-19-1.mp4

Additional notes by the speaker:

Downloading a Sketch Engine corpus: Go to Manage Corpus and Download (.txt/.vert); it works for your own corpora only, the precompiled corpora are not publicly available (but can be requested).
Definition 1 and Exercise 19/2
Given our index E1 and a competitor's index E2, we draw random samples e1 and e2 from E1 and E2, determine |e1 ∩ E2| and |e2 ∩ E1|, and let x = |e1 ∩ E2| / |e1| and y = |e2 ∩ E1| / |e2|. Since e1 and e2 are random samples of E1 and E2, y / x is our best estimate of |E1| / |E2|. Therefore, if we know |E1|, we can best estimate |E2| as |E1| * x / y.

Web search basics
Google Colaboratory code for seminars in the twelfth week
Chyba: Odkazovaný objekt neexistuje nebo nemáte právo jej číst.
https://is.muni.cz/el/fi/jaro2023/PV211/um/whiteboards/

Second term project

Below, you can find the homework vaults for submitting the second term project.

Second term project (CQADupStack Collection)
Homework vault for the second term project (a ranked supervised retrieval system for the CQADupStack Collection).

Alternative second term project (ARQMath Collection)
Homework vault for the alternative second term project (a ranked supervised retrieval system for the ARQMath Collection).

Below, you can find the peer assessment applications to review the second term projects of your colleagues.