CLEAN CODE, CODE SMELLS, REFACTORING

AND RELATED PRINCIPLES

Barbora BUuhnova
buhnova@fi.muni.cz

LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS -..

MASARYK UNIVERSITY, BRNO lasar‘is

Outline of the lecture

 Motivation

* The role of naming
 Classes, methods, variables

e The role of code structure

* S.O.L.I.D. principles
« DRY and GRASP principles

* Bad code smells

* Refactoring
* When, how, where

ally
lasaris

© B. BUhnova, PV260 Software Quality

Why are we here?

DO YOU KNOW HOW EXPENSIVE ITIS TO
HAVE DEVELOPERS AROUND?

ally
lasaris

© B. BUhnova & V. Dusch [1]

How is that related to code quality?

Your codebase is just like the database of a website.

* Read:Write ratiois like 10:1
... AND BRAINS FAIL AS CACHES

Goal is cheap Reads
* People will read your code again and again and again and ...

* How long does it really take to understand your code?

ally
lasaris

© B. BUhnova & V. Dusch [1]

Why is our code hard to understand?

* Management?
 Unclear requirements?
* Customers?

* Schedules?

* Requirement changes?

NO. BECAUSE WE WROTE IT LIKE THAT.
SO HOW TO GET IT RIGHT?

ally
lasaris

© B. BUhnova & V. Dusch [1]

Two rules of understandable code

1. Name things right
 Reveal intent, self-documented code. What about comments?
2. Balance code structure

* No God classes, long methods and other bad code smells.

IT IS EASY TO WRITE CODE THAT A MACHINE
UNDERSTANDS. WRITING CODE THAT ANOTHER
HUMAN CAN UNDERSTAND IS A LOT HARDER.

ally
lasaris

© B. BUhnova & V. Dusch [1]

The power of checklists

Some reports suggest
that surgical checklists
introduced by the World
Health Organization have
helped reduce mortality
rates in major surgery

by as much as 47%.

slly .
lasaris

© B. BUhnova & I. Jacobson

Let's name things!

CLASSES, METHODS, VARIABLES, ...

ally
lasaris

© B. BUhnova & V. Dusch [1]

Classes

* Name it after its purpose — Single responsibility principle!

THE CLASS NAME IS THE SINGLE MOST IMPORTANT
DEFINITION OF WHAT FITS INTO THAT CLASS.

* Using generic names throws that away!
ApplicationManager,
FrameworkDataInformationProvider,
UtilityDataProcessor

ally
lasaris

© B. BUhnova & V. Dusch [1]

Proper class names lead to smaller classes

* Should we let our Email class figure out attachment mime
types?

* By always asking if stuff fits we can ‘discover’ new classes in
our applications

e EmailAttachment, ImageEmailAttachment?

ally
lasaris

© B. BUhnova & V. Dusch [1]

And we care because?

* Big classes rob you of all OO benefits
* You depend on way to much other stuff
* Usually tightly coupled

* You can't extend from those classes and chances are you can't
swap out either

* You don't get nice interfaces as well

ally
lasaris

© B. BUhnova & V. Dusch [1]

Methods

e Does it return a boolean?

e CallithasX orisX

 Hidden booleans

status = user.getStatus|();

if (status == user.STATUS BANNED) {
}

if (user.isBanned()) {

}

ally
lasaris

© B. BUhnova & V. Dusch [1]

Getters and Setters

 Getter retrieve internal state
 Setters modify internal state
* Both should not modify anything else

* Don't make your setters into liars

Important
 Make sure that setters have no return value

* Use setters only if you want to allow this

ally
lasaris

© B. BUhnova & V. Dusch [1]

No boolean parameters

* If you don’t have a very good reason!

user.setAdminStatus (false) ;
user.setAdminStatus (true) ;

°VS.

user.revokeAdminRights () ;
user.grantAdminRights () ;

ally
lasaris

© B. BUhnova & V. Dusch [1]

Classes are nouns, methods start with verbs!

X.createStuff(); X.deleteStuff ()
X.dispatchCall(); X.subscribeUser () ;

 But never

user.admin(); or user.bag();
list.subscription();

ally
lasaris

© B. BUhnova & V. Dusch [1]

Agree on verbs for actions

* Can you tell me the difference between

directory.delete (entry);

and
directory.remove (entry) ;

router.dispatch/delegate (call);
list.add/append (user);

» Different actions need distinguishable names!
Even if that makes function names longer.

ally
lasaris

© B. BUhnova & V. Dusch [1]

Always favor long function names? NO!

* A short and precise public APl is important

* Precise names help a lot to create readable client code.

* But you want long privates

* Internally used functions can be named as verbosely as needed
to communicate their intent and behavior.

ally
lasaris

© B. BUhnova & V. Dusch [1]

Readable classes

Lots of small descriptive methods, best arranged as:

1. First you build it
2. Thenyou call it

3. Then it does work

4. Most work happens in private methods

class Log {
public Log(SplFileInfo fileInfo) {}
public void log() {}
private bool isLogfileWriteable() {}
private void createlLogfileIfNecaccary () {}
private void writeToLogfile() {}
private void flushCurrentLogfileBuffer () {}

} ally .
lasaris

© B. BUhnova & V. Dusch [1]

Last thing to name are Variables

Rules of thumb:
* Descriptive function parameters
* Big scope: long name

* Short scope: short name

The last thing? And what about comments?

* Self-documenting code

ally
lasaris

© B. BUhnova & V. Dusch [1]

Enough of naming?

LET'S MOVE ON TO CODE STRUCTURE!

ally
lasaris

© B. BUhnova & V. Dusch [1]

S.0O.L.LD. principles

* Single Responsibility Principle
* Open /Closed Principle

* Liskov Substitution Principle

* Interface Segregation Principle

* Dependency Inversion

ally
lasaris

© B. BUhnova, PV260 Software Quality

- S
SRP: The Single Responsibility Principle

THERE SHOULD NEVER BE MORE THAN ONE

REASON FOR A CLASS TO CHANGE.
Robert C. “Uncle Bob” Martin

* Why a reason for a class to change? Why not responsibility?
Because this is all interconnected!

» The more responsibilities, the more dependencies.
« The more dependencies, the higher risk of change propagation.

 The bigger change propagation, the higher risk of error.
* Following SRP leads to lower coupling and higher cohesion.

* Many small classes with distinct responsibilities resultin a
more flexible design. ally _
lasaris

© B. Buhnova & A. Masood [3]

. -
SRP: The Single Responsibility Principle

e public abstract class BankAccount
{
double Balance { get; }
void Deposit (double amount) ;
vold Withdraw (double amount) ;
volid Transfer (double amount, IBankAccount toAccount);
vold AddInterest (double amount) ;

}
Refactor to:

public abstract class BankAccount
{
double Balance { get; }
void Deposit (double amount) ;
vold Withdraw (double amount) ;
void Transfer (double amount, IBankAccount toAccount);

}

public class CheckingAccount : BankAccount

{
}

public class SavingsAccount : BankAccount

{

public void AddInterest (double amount) ; .
} | L | .

lasari

© B. BUhnova & Los Techies [4]

SRP Summary

» Many small classes with distinct responsibilities result in a more
flexible design.

* Following SRP leads to higher cohesion and lower coupling.

* Cohesion...
* How strongly-related and focused are the various responsibilities of a
module.
* Classes with low cohesion have a split personality.

* Coupling...
 The degree to which each program module relies on each one of the other
modules.
 Coupling is directly related to decomposition and you need to keep it in
mind when you decompose. L[)
lasaris

© B. Buhnova & A. Masood [3]

- e
OCP: The Open/Closed Principle

Open to Extension
New behavior can be added in the future

Closed to Modification

Changes to source or binary code are not required

* Bertrand Meyer originated the OCP term in his 1988 book,
Object Oriented Software Construction.

In OOP, abstractions include:
* Interfaces

* Abstract classes ally .
lasaris

© B. Buhnova & A. Masood [3]

S
Why is that a problem?

« We want to avoid introducing changes that cascade through
many modules in our application

* Writing new classes is less likely to introduce problems!
* Nothing depends on new classes (yet).

* New classes have no legacy coupling to make them hard to design or
test.

* Remember TANSTAAFL
* There Ain’t No Such Thing As A Free Lunch
« OCP adds complexity to design!

* Don’t apply OCP at first
If the module changes once, accept it.
If it changes a second time, refactor to achieve OCP

ally
lasaris

© B. Buhnova & A. Masood [3]

OCP Summary

« Conformance to OCP yields flexibility, reusability, and
maintainability.

* Know which changes to guard against, and resist premature
abstraction.

ally
lasaris

© B. Buhnova & A. Masood [3]

S S
LSP: The Liskov Substitution Principle

THE LISKOV SUBSTITUTION PRINCIPLE STATES THAT SUBTYPES
MUST BE SUBSTITUTES FOR THEIR BASE TYPES.
Agile Principles, Patterns, and Practices in C#

« Named for Brabara Liskov, who first described the principle in 1988.

Substitutability:

e Child classes must not:

* Remove base class behavior
* Violate base class invariants

» And in general, must not require calling code to know they are different from their
base type.

* To follow LSP, derived classes must not violate any constraints defined (or assumed
by clients) on the base classes.

ally
lasaris

© B. Buhnova & A. Masood [3]

.
The Problem

* Non-substitutable code breaks polymorphism
* Client code expects child classes to work in place of their base classes

* “Fixing” substitutability problems by adding if-then or switch statements
quickly becomes a maintenance nightmare (and violates OCP)

LSP violation:

foreach (var emp in Employees)
{
1f(emp is Manager)
{
printer.PrintManager (emp as Manager);
}
else
{
printer.PrintEmployee (emp)
}
}

ally
lasaris

© B. Buhnova & A. Masood [3]

- e
LSP Summary

 Conformance to LSP allows for proper use of polymorphism
and produces more maintainable code.

e Remember IS-SUBSTITUTABLE-FOR instead of IS-A.

Consider Refactoring to a new Base Class

* Given two classes that share a lot of behavior but are not
substitutable.

e Create a third class that both can derive from.

* Ensure substitutability is retained between each class and the

new base. ally _
lasaris

© B. Buhnova & A. Masood [3]

ISP: The Interface Segregation Principle

THE ISP STATES THAT CLIENTS SHOULD NOT BE FORCED TO
DEPEND ON METHODS THEY DO NOT USE.

Agile Principles, Patterns, and Practices
in C#

* That is, prefer small, cohesive interfaces to “fat”
interfaces.

 What is an interface?

Interface keyword/type
public interface IDoSomething { .. }
Public interface of a class

public class SomeClass { .. } -].gsar‘is
© B. Buhnova & A. Masood [3]

I
The Problem

* Client references a class but only uses small portion of it

* Interface Segregation violations result in classes that depend
on things they do not need, increasing coupling and reducing
flexibility and maintainability

* Unimplemented interface methods

ally
lasaris

© B. Buhnova & A. Masood [3]

- S
When do we fix ISP?

* Once there is pain
olf there is no pain, there’s no problem to address.

* If you find yourself depending on a “fat” interface
you own
o Create a smaller interface with just what you need
oHave the fat interface implement your new interface
o Reference the new interface with your code

* If you find “fat” interfaces are problematic but you
do not own them
oCreate a smaller interface with just what you need

olmplement this interface using an Adapter that implemerﬁ the
full interface
lasaris

© B. Buhnova & A. Masood [3]

ISP Summary

* Don't force client code to depend on things it doesn’t need.
* Keep interfaces small, cohesive, and focused
* Whenever possible, let the client define the interface

* Whenever possible, package the interface with the client

o Alternately, package in a third assembly client and implementation both
depend upon
o Last resort: Package interfaces with their implementation

ally
lasaris

© B. Buhnova & A. Masood [3]

DIP: The Dependency Inversion Principle

HIGH-LEVEL MODULES SHOULD NOT DEPEND ON
LOW-LEVEL MODULES. BOTH sHOULD DEPEND ON
ABSTRACTIONS.

&

i
asdre {n:,‘. ’.'
L= .
%
/») “ Core 9%
NS

lasaris

© B. Buhnova & A. Masood [3]

Traditional Programming and Dependencies

* High Level modules call Low Level modules

* User Interface depends on
o Business Logic depends on
o Infrastructure
o Utility
o Data Access

» Static methods are used for convenience or as Facade layers

» Class instantiation / Call stack logic is scattered through all
modules
o Violation of Single Responsibility Principle

ally
lasaris

© B. Buhnova & A. Masood [3]

The Problem

 Dependencies Flow Toward Infrastructure

* Core [Business [Domain Classes Depend on Implementation
Details

* Result
o Tight coupling
o No way to change implementation details without recompile (OCP
violation)
o Difficult to test

ally
lasaris

© B. Buhnova & A. Masood [3]

Classes should declare what they need

» Class constructor should require any dependencies the class needs.

* Classes whose constructors make this clear have explicit dependencies.

Classes that do not, have implicit, hidden dependencies.

public class HelloWorldExplicit

{

private readonly DateTime timeOfGreeting;

public HelloWorldExplicit (DateTime timeOfGreeting)

{
timeOfGreeting = timeOfGreeting;

}

public string Hello(string name)

{

if (timeOfGreeting.Hour < 12) return "Good morning,
if (timeOfGreeting.Hour < 18) return "Good afternoon,

return "Good evening, " + name;

}

mw

© B. Buhnova & A. Masood [3]

+ name;
" 4+ name;

ally
lasari

- »
DIP: Summary

* Depend on abstractions.

* Don't force high-level modules to depend on low-level
modules through direct instantiation or static method calls.

* Declare class dependencies explicitly in their constructors.
Dependency injection

* Inject dependencies via constructor, property, or parameter
Injection.

ally
lasaris

© B. Buhnova & A. Masood [3]

DRY: Don't RepeatYourself

“EVERY PIECE OF KNOWLEDGE MUST HAVE A SINGLE,

UNAMBIGUOUS REPRESENTATION IN THE SYSTEM.”
The Pragmatic Programmer

Variations include:
* Once and Only Once
* Duplication Is Evil (DIE)

ally
lasaris

© B. Buhnova & A. Masood [3]

No duplication

» What can be duplicated?
» Code Blocks
* Methods
* Classes
* Functions
* Components
* Exceptions

 Minimalistic code

« What minimalism mean? What do we want to minimize?
What can be minimized?

ally
lasaris

© B. BUhnova

DRY: Summary

* Repetition breeds errors and waste

 Refactor code to remove repetition

Repetition in process

* Testing
o Performing testing by hand is tedious and wasteful

* Builds

o Performing builds by hand is tedious and wasteful

* Deployments

o Performing deployments by hand is tedious and wasteful allg
lasaris

© B. Buhnova & A. Masood [3]

GRASP

 General Responsibility Assignment Software Principles
(or Patterns), abbreviated GRASP.

» Consist of guidelines for assigning responsibility to classes
and objects in object-oriented design.

* GRASP are basically a mental toolset, a learning aid to help in
the design of object-oriented software

* Principles used in GRASP are controller, creator, indirection,
information expert, high cohesion, low coupling,
polymorphism, protected variations, and pure fabrication.

ally
lasaris

© B. BUhnova

GRASP

* Information expert
» Problem: What is a basic principle by which to assign responsibilities to objects?
* Solution: Assign responsibility to the class that has the information needed to fulfill it.

* Creator
* Problem: Who creates object A?

* Solution: In general, Assign class B the responsibility to create object A if one, or
preferably more, of the following apply:
* instances of B contain or compositely aggregate instances of A,
* record instances of A,
* closely use instances of A,
* have the initializing information for instances of A and pass it on creation.

* Protected variations

* Problem: How to design objects, subsystems, and systems so that the variations in
these elements does not have an undesirable impact on other elements?

* Solution: Identify points of predicted variation or instability; assign responsibilities to
create a stable interface around them. -..

lasari

© B. BUhnova

GRASP

* Controller
* Problem: Who should be responsible for handling an input system event?

* Solution: A use case controller should be used to deal with all system events
of a use case, and may be used for more than one use case.

* Indirection
* Problem: Where to assign responsibility, to avoid direct coupling between
two (or more) things?
* Solution: Assign the responsibility to an intermediate object to mediate
between other components or services so that they are not directly coupled.

* Pure fabrication
A pure fabrication is a class that does not represent a concept in the problem
domain. It is basically a service specially made up to achieve low coupling,
high cohesion, and the reuse potential thereof derived. 0
| b

lasaris

© B. BUhnova

GRASP

* Low coupling
 Coupling is a measure of how strongly one element is connected to, has
knowledge of, or relies on other elements. Low coupling implies:
* lower dependency between the classes;
* change in one class having a lower impact on other classes,
* higher reuse potential.

* High cohesion
 High cohesion is an evaluative pattern that attempts to keep objects
appropriately focused, manageable and understandable. High cohesion
means that the responsibilities of a given set of elements are strongly
related and highly focused on a rather specific topic.

* Polymorphism
* Problem: How to handle alternatives based on type? How to create
pluggable software components?

* Solution: When related alternatives or behaviors vary by type (class), assign
responsibility for the behavior—using polymorphic operations—toghe types
for which the behavior varies. 0 i
lasaris

© B. BUhnova

Ready for more?

BUT WHAT IF WE ALREADY HAVE THE CODE?
How CAN WE FIND OUT IT SMELLS AND HOW
CAN REFACTORING HELP US WITH THAT?

ally
lasaris

© B. BUhnova, PV260 Software Quality

Bad Code Smells

* Different abstraction levels (not top down - mixed, skipping
levels, mixing levels in one method)

* Low cohesion (God classes, long methods, script/program
wrapped as a class)

» Circular dependencies (between classes - mother of all tight
couplings)

* Duplicated code
* Long parameter list

e ...and many many more

ally
lasaris

© B. BUhnova

What is refactoring?

» Refactoring is the process of changing a software system in
such a way that it does not alter the external behavior of the
code yet improves its internal structure

» Refactoring (noun): a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behavior.

» Refactor (verb): to restructure software by applying a series of
refactorings without changing its observable behavior.

ally
lasaris

© B. BUhnova & I. Crvenov [6]

When to refactor?

When you have the refactoring hat on your head!
* As part of the routine (e.g. TDD).

* After you find weak code (boy scout rule), or need to fix a
bug.

* Before and/or after you introduce code of a new feature (or a
new technology like loC container).

 Long term planned refactoring

Only when it leads to faster delivery and better maintenance.

Clean code is a means to this end. ally _
lasaris

© B. BUhnova & M. Osovsky [5]

Where to refactor?

Stuff

Services

—— Skin

Structure

I Site

otewart Brand's 6 S's from How Buildings Learn
© B. BUhnova & M. Osovsky [5]

1 day - 1 month

7 -15 years
20 years
30 - 300 years

Eternal

lasaris

How to refactor?

 Use IDE all the time (even when renaming!).
Run tests before and after!

 Boundary tests (testing published interfaces) should stay
green.

* Know most common refactorings (extract ..., rename, move,
introduce) - learn to use them as part of your IDE mastery.

ally
lasaris

© B. BUhnova & M. Osovsky [5]

And how Martin Fowler does it?

* M.F: “Whenever | do refactoring, the first step is always the
same. | need to build a solid set of tests for that section of
code. The tests are essential because even though | follow
refactorings structured to avoid most of the opportunities for

introducing bugs, I'm still human and still make mistakes. Thus |
need solid tests.”

Tip:

Before you start refactoring, check that you have a solid suite
of tests. These tests must be self-checking

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Refactoring methods

Extract Method

* You have a code fragment that can be grouped together. Turn
the fragment in to a method whose name explains the purpose

of the method.

» Extract Method is one of the most common refactorings being
done. One looks at a method that is too long or look at code
that needs a comment to understand its purpose. One then
turns that fragment of code into its own method.

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Extract method

BEfOI’e refactonng After Refactorlng
void printOwing (double amount) void printOwing (double amount)
{ {
printBanner () ; printBanner () ;
printDetails (amount) ;
//print details }
WritelLine ("name:" + name);
WriteLine ("amount" + amount) ; void printDetails (double amount)
} {
WritelLine ("name:" + name);

WriteLine ("amount" + amount):;

© B. BUhnova & I. Crvenov [6]

Inline method

Before Refactoring After Refactoring
int getRating() int getRating ()
{ {
return (moreThanFivelateDeliveries()) °? return (numberOflLateDeliveries > 5) ?
2 1; 2 1,

} }

boolean moreThanFivelateDeliveries ()

{

return numberOflLateDeliveries > 5;

}

© B. BUhnova & I. Crvenov [6]

Maximum method length?

* Maximum method length?
6 Lines ought to be enough for everybody?

Smaller is harder to write
 Writing ONLY small functions is a SKILL
* It is easy to write big functions!

* But the first change makes it all worth!

ally
lasaris

© B. BUhnova & V. Dusch [1]

Split temporary variable

* You have a temporary variable assigned to more than once, but is not
a loop variable nor a collecting temporary variable. Make a separate
temporary variable for each assignment.

Before Refactoring

double temp = 2 * (height + width);
WritelLine (temp) ;

temp = height * width;

WritelLine (temp) ;

After Refactoring

double perimeter = 2 * (height + width);
WriteLine (perimeter) ;

double area = height * width;

WritelLine (area) ;

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Remove assignments to parameters

* The code assigns to a parameter.
Use a temporary variable instead.

Before Refactoring

int discount (int inputVal, 1int quantity, int yearToDate) {
if (inputval > 50) inputVal -= 2;

}

After refactoring

int discount (int inputVal, int quantity, int yearToDate) {
int result = inputVal;
if (inputvVal > 50) result -= 2;
- -y
lasaris

© B. BUhnova & I. Crvenov [6]

. B
Replace method with method object

* You have a long method that uses local variables in such a way that you
cannot apply Extract Method. Turn the method into its own object so that
all the local variables become fields on that object. You can then
decompose the method into other methods on the same object.

Order PriceCalculator
primaryBasePrice
secondaryBasePrice
price() Q tertiaryBasePrice
\ <
t
\ 1 compute
A
\
\
\
\;
AN
return new PriceCalculator(this).compute()
ally
lasaris

© B. BUhnova & I. Crvenov [6]

Move method

* A method is, or will be, using or used by more features of

another class than the class on which it is defined.

Create a new method with a similar body in the class it uses most. Either turn
the old method into a simple delegation, or remove it altogether.

Class 1

aMethod|)

Class 2

Class 1

=

Class 2

aMethod()

© B. BUhnova & I. Crvenov [6]

ally
lasaris

L
Move field

* A field is, or will be, used by another class more than the class
on which it is defined. Create a new field in the target class,
and change all its users.

Class 1 Class 1

aField

Class 2 Class 2

aField

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Extract class

* You have one class doing work that should be done by two.
Create a new class and move the relevant fields and methods

from the old class into the new class.

Parsa — Telaphene Nurber
fame office Tedephone .
dlcedreaCot #> e e ”w
dicelunibe : “
Telghooeliambe
A i geTetonehunte
ull

lasaris

© B. BUhnova & I. Crvenov [6]

Inline class

A class isn't doing very much.Move all its features into another
class and delete it.

* Inline Class is the reverse of Extract Class. | use Inline Class if a
class is no longer pulling its weight and shouldn't be around any
more. Often this is the result of refactoring that moves other
responsibilities out of the class so there is little left.

— Telphone M b
officeTelephone name
areaCode —\
flame ;1,’- sy _,> :LEE!&
gelTekghonebumbe
laghurehlte ligtoeias | gy
lasaris

© B. BUhnova & I. Crvenov [6]

5
Hide delegate

* A client is calling a delegate class of an object.

Create methods on the server to hide the delegate.

Client Class Client Class
I
T ﬁf

y i Person

Person Department qeiManager
getDepartmert e getManager I
y

Does it make sense to reverse this Depertment

refactoring? ally

lasaris

© B. BUhnova & I. Crvenov [6]

Remove the middle man

* A class is doing too much simple delegation. Get the client to
call the delegate directly.

Chent Class

Client Class

| e —_—
Y getDepartment gethanager

Depmm I..]
lasaris

© B. BUhnova & I. Crvenov [6]

Replace data with value object

* You have a data item that needs additional data or behavior.
Turn the data item into an object.

Order

customer: String

U

1 Customer

Order E: 2

W

name: String

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Replace array with object

® You have an array in which certain elements mean different

things. Replace the array with an object that has a field for
each element.

String[] row = new String[3];
row [0] = "Liverpool”;
row [1] = "15";

After Refactoring:

Performance row = new Performance() ;
row.setName ("Liverpool") ;
row.setWins ("15") ;

I.ll)
© B. BUhnova & I. Crvenov [6] daSarils

Replace magic number with a constant

® You have a literal number with a particular meaning. Create a
constant, name it after the meaning, and replace the number
with it.

double potentialEnergy (double mass, double height)
{

return mass * 9.81 * height;

}

double potentialEnergy (double mass, double height)

{
return mass * GRAVITATIONAL CONSTANT * height;

}

static final double GRAVITATIONAL CONSTANT = 9.81;

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Encapsulate field

* There is a public field. Make it private and provide accessors.

public String name;

After Refactoring:

private String name;
public String getName () {return name;}
public void setName (String arg) {name = arg;}

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Encapsulate collection

® A method returns a collection. Make it return a read-only view and
provide add/remove methods.

Person Person
: getCourses():Unmodifiable Set
geCouwses e 7 addCourse(:Course)

setCourses(:Set) removeCourse(-Course)

Motivation

Often a class contains a collection of instances. This collection
might be an array, list, set, or vector. Such cases often have the

usual getter and setter for the collection. ally]
lasaris

© B. BUhnova & I. Crvenov [6]

Decompose conditional

® You have a complicated conditional (if-then-else) statement.
Extract methods from the condition, then part, and else parts.

if (date.before (SUMMER START) || date.after (SUMMER END))
charge = quantity * winterRate + winterServiceCharge;
else
charge = quantity * summerRate;

After Refactoring:

1f (notSummer (date))

charge = winterCharge (quantity);
else
charge = summerCharge (quantity):;
ol
lasaris

© B. BUhnova & I. Crvenov [6]

Consolidate conditional expression

® You have a sequence of conditional tests with the same result.
Combine them into a single conditional expression and extract
It.
double disabilityAmount () {
if (seniority < 2) return 0;
if (monthsDisabled > 12) return O;
if (isPartTime) return O;

After Refactoring:

// compute the disability amount
double disabilityAmount () {
if (isNotEligableForDisability()) return O;

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Consolidate duplicate conditional fragments

* The same fragment of code is in all branches of a conditional
expression. Move it outside of the expression

if (isSpecialDeal()) {
total = price * 0.95;
send () ;

}

else {
total = price * 0.98;
send () ;

}

After Refactoring:
if (isSpecialDeal ())
total = price * 0.95;

else
total = price * 0.98;
send () ; -..

lasaris

© B. BUhnova & I. Crvenov [6]

Replace nested conditional with guard classes

* A method has conditional behavior that does not make clear the normal path of execution. Use guard
clauses for all the special cases

double getPayAmount () {
double result;

i1f (isDead) result = deadAmount () ;
else
{
if (isSeparated) result = separatedAmount () ;
else {
if (isRetired) result = retiredAmount () ;
else result = normalPayAmount () ;

b
}

return result;

b
After Refactoring:

double getPayAmount () {
i1f (isDead) return deadAmount () ;
if (isSeparated) return separatedAmount () ;
if (isRetired) return retiredAmount () ;
return normalPayAmount () ;

}s -.l .
lasari

© B. BUhnova & I. Crvenov [6]

Rename method

* The name of a method does not reveal its purpose. Change the
name of the method

Gustomer Customer

A>
gelinvediml 7 (etinvoiceableCrediLimit

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Separate query from modifier

* You have a method that returns a value but also changes the
state of an object. Create two methods, one for the query and
one for the modification.

Customer Customer

A
qgetToslOutstandingfindSetReadyF orSummarics 7> elTotalOutsanding

seiReadylorSummaries

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Parameterized method

 Several methods do similar things but with different values
contained in the method body. Create one method that uses a
parameter for the different values.

Employee Employee
A\
fiveParcentRaise) e / raise(percentage)
lenPercentRaise()

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Introduce parameter to object

* You have a group of parameters that naturally go together.
Replace them with an object.

Customer Customer

i o i .
amountinvoicedin(stant: Date, end: Date) — amountinvoicedin{DateRange)
amountReceivedin(start; Date, end: Date) / amountRecenvedin{DateRange)
amountOverdueln(start: Date, end: Date) amounlOverdueln{DateRange)

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Remove setting methods

* A field should be set at creation time and never altered.
Remove any setting method for that field.

Employee Employee
=

satimmutzblaValua

* Providing a setting method indicates that a field may be
changed. If you don't want that field to change once the object
is created, then don't provide a setting method (and make the
field final). That way your intention is clear and you often
remove the very possibility that the field will change. ally

lasaris

© B. BUhnova & I. Crvenov [6]

Hide method

* A method is not used by any other class. Make the method
private

Employee R\ Employee
=

+ aMethod - aMethod

ally
lasaris

© B. BUhnova & I. Crvenov [6]

. S
Pull up field

* Two subclasses have the same field. Move the field to the
superclass.

Employee

Employee

Maime:

I

Salesman Enginaer

Salesman Engineer

FAfE name

ally
lasaris

© B. BUhnova & I. Crvenov [6]

. N
Pull up method

* Two subclasses have the same field. Move the field to the

superclass.
Employee
Emiployea
A> galiame
h T b
I | l l
Salesman Engineer
Salesman Engineer
gethame gelName ‘

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Push down method

* Behavior on a superclass is relevant only for some of its
subclasses. Move it to those subclasses

Employee
Employes
geluota _\>
A E AN
| | I |
Salesman
Salesman Engineer Engineser
petCuota

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Extract subclass

* A class has features that are used only in some instances.
Create a subclass for that subset of features

Job ltem
getTotalPrce
Job ltem getUnitPrice
gelTotalPrice —\> !\
getUnitPrice 7
gelEmployee
Labor Item
getUnitPrice
getEmployes
-..)
lasaris

© B. BUhnova & I. Crvenov [6]

Extract superclass

* You have two classes with similar features. Create a superclass
and move the common features to the superclass.

Departmient Party
gﬂ;:u:alﬁmualtusl gr:mﬂm’
e ame
g:!-!-eadWL »
=> T
5
Employee |
Employea Department
gethnnuaiCost
i::am getAnnuaiCost getAnnualCost
getld getHeadCount
ally
lasaris

© B. BUhnova & I. Crvenov [6]

Collapse hierarchy

A superclass and subclass are not very different. Merge them

together.
Employee
_\> Employee
— 74
Salesman

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Refactoring and performance

* To make the software easier to understand, you often make
changes that will cause the program to run more slowly.

* However, the calling overhead is very small and pays off!

ally
lasaris

© B. BUhnova & I. Crvenov [6]

Takeaways

* It always pays off to make your code easier to understand.

* Write self-documenting code, use naming (not comments) to
express code’s intent.

* Understand S.O.L.1.D. principles and do not be afraid to
restructure your code into MANY small classes and methods.

 Refactoring and testing make you FASTER!
 Bad code smells will navigate you.

K thanks for listening

Barbora Buhnova, FI MU Brno contact me
buhnova®@fi.muni.cz Ne—

www.fi.muni.cz/~buhnova ‘.l .
lasaris

© B. BUhnova, PV260 Software Quality

mailto:buhnova@fi.muni.cz
http://www.fi.muni.cz/~buhnova

References

[1] V. Dusch: Stop wasting time through clean code

[2] Ondrej Krajicek: PV260 lecture in Spring 2015

[3] Adnan Masood: Refactoring Code to a Solid Foundation

[4] Los Techies: Pablo's SOLID Software Development

[5] Martin Osovsky: PV260 lecture in Spring 2015

[6] Igor Crvenov: Refactoring Tips by Marin Fowler

ally
lasaris

© B. BUhnova, PV260 Software Quality

	Slide 1: AND RELATED PRINCIPLES
	Slide 2: Outline of the lecture
	Slide 3: Why are we here?
	Slide 4: How is that related to code quality?
	Slide 5: Why is our code hard to understand?
	Slide 6: Two rules of understandable code
	Slide 7: The power of checklists
	Slide 8: Let’s name things!
	Slide 9: Classes
	Slide 10: Proper class names lead to smaller classes
	Slide 11: And we care because?
	Slide 12: Methods
	Slide 13: Getters and Setters
	Slide 14: No boolean parameters
	Slide 15: Classes are nouns, methods start with verbs!
	Slide 16: Agree on verbs for actions
	Slide 17: Always favor long function names? NO!
	Slide 18: Readable classes
	Slide 19: Last thing to name are Variables
	Slide 20: Enough of naming?
	Slide 21: S.O.L.I.D. principles
	Slide 22: SRP: The Single Responsibility Principle
	Slide 23: SRP: The Single Responsibility Principle
	Slide 24: SRP Summary
	Slide 25: OCP: The Open/Closed Principle
	Slide 26: Why is that a problem?
	Slide 27: OCP Summary
	Slide 28: LSP: The Liskov Substitution Principle
	Slide 29: The Problem
	Slide 30: LSP Summary
	Slide 31: ISP: The Interface Segregation Principle
	Slide 32: The Problem
	Slide 33: When do we fix ISP?
	Slide 34: ISP Summary
	Slide 35: DIP: The Dependency Inversion Principle
	Slide 36: Traditional Programming and Dependencies
	Slide 37: The Problem
	Slide 38: Classes should declare what they need
	Slide 39: DIP: Summary
	Slide 40: DRY: Don’t Repeat Yourself
	Slide 41: No duplication
	Slide 42: DRY: Summary
	Slide 43: GRASP
	Slide 44: GRASP
	Slide 45: GRASP
	Slide 46: GRASP
	Slide 47: Ready for more?
	Slide 48: Bad Code Smells
	Slide 49: What is refactoring?
	Slide 50: When to refactor?
	Slide 51: Where to refactor?
	Slide 52: How to refactor?
	Slide 53: And how Martin Fowler does it?
	Slide 54: Refactoring methods
	Slide 55: Extract method
	Slide 56: Inline method
	Slide 57: Maximum method length?
	Slide 58: Split temporary variable
	Slide 59: Remove assignments to parameters
	Slide 60: Replace method with method object
	Slide 61: Move method
	Slide 62: Move field
	Slide 63: Extract class
	Slide 64: Inline class
	Slide 65: Hide delegate
	Slide 66: Remove the middle man
	Slide 67: Replace data with value object
	Slide 68: Replace array with object
	Slide 69: Replace magic number with a constant
	Slide 70: Encapsulate field
	Slide 71: Encapsulate collection
	Slide 72: Decompose conditional
	Slide 73: Consolidate conditional expression
	Slide 74: Consolidate duplicate conditional fragments
	Slide 75: Replace nested conditional with guard classes
	Slide 76: Rename method
	Slide 77: Separate query from modifier
	Slide 78: Parameterized method
	Slide 79: Introduce parameter to object
	Slide 80: Remove setting methods
	Slide 81: Hide method
	Slide 82: Pull up field
	Slide 83: Pull up method
	Slide 84: Push down method
	Slide 85: Extract subclass
	Slide 86: Extract superclass
	Slide 87: Collapse hierarchy
	Slide 88: Refactoring and performance
	Slide 89: Takeaways
	Slide 90: References

