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Contents

Propositional satisfiability (SAT)

• (A ∨ ¬B) ∧ (¬A ∨ C)
• is it satisfiable?

Satisfiability modulo theories (SMT)

• x = 1 ∧ x = y+ y ∧ y > 0
• is it satisfiable over reals?
• is it satisfiable over integers?

Automated theorem proving (ATP)

• axioms: ∀x (x+ x = 0), ∀x∀y (x+ y = y+ x)
• do they imply ∀x∀y ((x+ y) + (y+ x) = 0)?
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Contents

For each of the problems (SAT/SMT/ATP)

• necessary definitions and theoretical results
• algorithms to solve the problem
• usage in practice and practical considerations
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Organization of the Course



Schedule and Requirements

During semester

• lecture every week (except April 10, May 1, May 8)
• seminar every other week
• project (write your own small SAT solver) -- mandatory

Exam

• oral exam
• you will have access to the lecture slides
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Project

Implement your own SAT solver

• you can use any reasonable programming language (C, C++, C#, Go, Java,
Python, Rust, . . .)

• you are encouraged to work in pairs (but you do not have to)
• technical requirements are specified in the information system
• more advanced features→ bonus points for the exam
• the scores will be evaluated periodically through the semester, you will see
the ranking
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Who am I?

• author of SMT solver Q3B for quantified formulas over bit-vector theory
• for 3 years post-doctoral researcher in Fondazione Bruno Kessler: research
focused on SMT-based verification of software and SAT-based verification of
hardware

• PhD thesis about satisfiability of quantified formulas over bit-vector theory
• author of several research papers about solving SMT and using it in practice
• co-organizer of SMT-COMP 2024
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Propositional Logic



Propositional logic

Propositional logic deals with propositions, their relationships, and arguments
based on them.

Does not deal objects and their properties, just with separate atomic claims.

``Martin has brown hair''

(A)

``Martin does not have hair''

(B)

No relationship as far as propositional logic is concerned.

``Martin has brown hair''

(A)

if ``Martin has brown hair`` then ``Martin does have hair''

(A→ B)

Implies ``Martin does have hair''

(B)

.
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Syntax

Let V = {A,B, C, . . .} be a countable set of propositional variables. The set of
propositional formulas is defined inductively as

• ⊤ and ⊥ are propositional formulas,
• v is a propositional formula for each v ∈ V (called propositional atom),
• if φ is a propositional formula, ¬φ is a propositional formula,
• if φ and ψ are propositional formulas, φ ∧ ψ, φ ∨ ψ, φ→ ψ, and φ↔ ψ are
propositional formulas.

Example
• A ∧ B
• (A ∨ B)↔ ¬C

Formulas of form v or ¬v are called literals.
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Semantics: Truth Assignments

Atoms(φ) = the set of all atoms of formula φ.

(Total) truth assignment for formula φ

• assigns true (⊤) or false (⊥) to each propositional variable in φ
• a function µ : V′ → {⊤,⊥} where Atoms(φ) ⊆ V′

• can be written as a set of non-contradictory literals containing all variables
of φ

Example
• formula φ = A ∨ B,
• total assignment µ(A) = ⊤, µ(B) = ⊥,
• written as µ = {A,¬B}.
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Semantics: Satisfaction

Define when a truth assignment µ satisfies the formula φ, written µ |= φ:

• µ |= ⊤,
• µ |= v if µ(v) = ⊤,
• µ |= ¬ψ if not µ |= ψ,
• µ |= ψ1 ∧ ψ2 if µ |= ψ1 and µ |= ψ2,
• µ |= ψ1 ∨ ψ2 if µ |= ψ1 or µ |= ψ2,
• µ |= ψ1 → ψ2 if not µ |= ψ1 or µ |= ψ2,
• µ |= ψ1 ↔ ψ2 if µ |= ψ1 if and only if µ |= ψ2,
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Semantics: Model

If µ |= φ, we say that µ is a model of φ.

Example
{A,¬B, C} is a model of A ∧ (B↔ ¬C)

An assignment µ is a partial model of φ if each extension of µ that is a truth
assignment to φ is a model of φ.

Example
{A,B} is a partial model of (A ∧ B) ∨ (A ∧ C)
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Propositional Entailment

Formula φ propositionally entails formula ψ (written φ |= ψ) if every µ that is a
truth assignment for both φ and ψ satisfies

if µ |= φ then also µ |= ψ

Example
• A |= A ∨ B
• (A→ B) ∧ A |= B
• (A ∨ B) ∧ (¬A ∨ C) |= (B ∨ C)
• A ̸|= A ∧ B
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Propositional Equivalence

Formulas φ and ψ are propositionally equivalent (written φ ≡ ψ) if

φ |= ψ and ψ |= φ

Example
• A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C)
• A ∧ (A ∨ B) ≡ A
• ¬(A ∧ B) ≡ ¬A ∨ ¬B
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Negation Normal Form

Negation Normal Form (NNF)

• negations are applied only to propositional atoms
• the formula does not contain implication (→) and equivalence (↔)

Transformation to NNF

1. rewrite all φ↔ ψ to (φ→ ψ) ∧ (φ← ψ)

2. rewrite all φ→ ψ to ¬φ ∨ ψ
3. apply De Morgan rules until fixed point

– rewrite ¬(φ ∧ ψ) to (¬φ) ∨ (¬ψ)
– rewrite ¬(φ ∨ ψ) to (¬φ) ∧ (¬ψ)
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Conversion to NNF: Complexity

What is the complexity of conversion to NNF?

φ↔ ψ ; (¬φ ∨ ψ) ∧ (φ ∨ ¬ψ)

Each equivalence doubles the size of the formula→ translation can be
exponential!

Or is it? It depends on the representation of the formulas.
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Representation of Formulas

(¬φ ∨ ψ) ∧ (φ ∨ ¬ψ)

Tree

φ ψ φ ψ

¬ ¬

∨ ∨

∧

Directed acyclic graph (DAG)

φ ψ

¬ ¬

∨ ∨

∧

In practice, we represent formulas as DAGs.
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Conversion to NNF: Complexity

Theorem
When representing formulas as DAGs, the transformation to NNF is linear.

Proof idea.
The DAG contains two nodes for each subformula φ: one for φ, one for ¬φ.

Proof details (bonus).
Recursively define function NNF(φ) = (φ+, φ−). Given NNF(ψ) = (ψ+, ψ−) and
NNF(ρ) = (ρ+, ρ−):

NNF(ψ ∧ ρ) = (ψ+ ∧ ρ+, ψ− ∨ ρ−)
NNF(¬ψ) = (ψ−, ψ+)

NNF(ψ ↔ ρ) = ((ψ− ∨ ρ+) ∧ (ψ+ ∨ ρ−)︸ ︷︷ ︸
positive

, (ψ+ ∧ ρ−) ∨ (ψ− ∧ ρ+)︸ ︷︷ ︸
negative

).

For more details, see Property 1 in Gabriele Masina, Giuseppe Spallitta, Roberto
Sebastiani: On CNF Conversion for SAT Enumeration.
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Conjunctive Normal Form

Clause

• disjunction of literals
• A ∨ ¬B ∨ C
• written as {A,¬B, C} thanks to idempotence, commutativity, and associativity
• what is {}?

Formula in Conjunctive Normal Form (CNF)

• conjunction of clauses
• (A ∨ ¬B ∨ C) ∧ (B ∨ ¬C) ∧ C
• written as {{A,¬B, C}, {B,¬C}, {C}} thanks to idempotence, commutativity,
and associativity

• what is {}?
• what is {∅}?
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Conjunctive Normal Form

• Easy to represent (clause = list[int], formula = list[clause]).
• Easy to write algorithms, do not have to deal with the structure of the
formula.

• Most of modern SAT solvers have input in CNF.
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Conjunctive Normal Form

Transformation to CNF (naive)

1. transform to NNF
2. apply distributivity until fixed point

– rewrite φ ∨ (ψ ∧ ρ) to (φ ∨ ψ) ∧ (φ ∨ ρ)
– rewrite (ψ ∧ ρ) ∨ φ to (ψ ∨ φ) ∧ (ρ ∨ φ)

This is again exponential, try with
∨
1≤i≤n(Ai ∧ Bi).

Can we do better? What if the DAG representation is used? What if we use a
different algorithm?
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Conversion to CNF: Naive

Theorem
There exists an infinite family of formulas Φ = {φi | i ∈ N} such that for each
equivalent family of formulas with φCNFi ≡ φi, the size |φCNFi | grows exponentially
with respect to |φi| (even for DAG representation).

Proof.
Let parityi(A1,A2, . . . , Ai) = A1 ⊕ A2 ⊕ . . .⊕ Ai. We can show that

• parityi can be defined by a formula φi of size O(i),
• each formula φCNFi in CNF that defines parityi has 2i−1 clauses.

We cannot do better than exponential./
Or can we? Yes, we can! Later today.
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Disjunctive Normal Form

Cube

• conjunction of literals
• A ∧ ¬B ∧ C

Formula in Disjunctive Normal Form (DNF)

• disjunction of cubes
• (A ∧ ¬B ∧ C) ∨ (B ∧ ¬C) ∨ C

We will not be dealing with DNF often in this course.
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Propositional Satisfiability (SAT)



Satisfiability Problem

Problem (SAT)
Given a propositional formula, decide whether it is satisfiable.

Problem (CNF-SAT)
Given a propositional formula in CNF, decide whether it is satisfiable.

Problem (3-SAT)
Given a propositional formula in CNF with each clause of size 3, decide whether it
is satisfiable.
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Hardness of Propositional Satisfiability: Theory

Theorem
SAT, CNF-SAT, and 3-SAT are NP-complete.

Proof ideas.
• Whether an assignment is a model can be checked in polynomial time.
• A computation of Turing machine of polynomial length can be encoded by a
CNF formula of polynomial size.

There are no known polynomial algorithms for propositional satisfiability.
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Hardness of Propositional Satisfiability: Practice

Modern SAT solvers can decide satisfiability of formulas with thousands of
variables and millions of clauses thanks to

• clever algorithms (worst case exponential)
• clever data structures
• clever heuristics

Give it a try:

• MiniSAT (http://minisat.se/)
• CaDiCaL (https://github.com/arminbiere/cadical)
• Kissat (https://github.com/arminbiere/kissat)
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Applications: Other Logical Problems

Other logical problems can be reduced1 to satisfiability

Entailment

• φ |= ψ ⇔ φ ∧ ¬ψ is not satisfiable

Validity

• a φ is valid if every total assignment for φ is its model
• φ is valid ⇔ ¬φ is not satisfiable

1in the sense of Turing reductions
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Applications: Hardware Design

[Example from: https://www21.in.tum.de/~lammich/2015_SS_Seminar_SAT/
resources/Equivalence_Checking_11_30_08.pdf]

Are circuits C1 and C2 equivalent?

Is ¬(formula(C1)↔ formula(C2)) UNSAT? (called a miter formula)

Works only for reasonably small circuits. For larger circuits (millions of gates),
more involved techniques are necessary, e.g., SAT-sweeping.
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Applications: Package Dependency

• package P has n versions:
xP1 , xP2 , . . ., xPn

• only one can be installed at a time:
¬xPi ∨ ¬x

P
j for all packages P and versions i ̸= j

• packages have dependencies:
xP3 → (xQ1 ∨ x

Q
2 ) ∧ xR8

• I have version 1 of package Q and want to install version 3 of package P:
xP3 ∧ x

Q
8

• what dependencies I need to install:
Is the formula SAT? What is its model?

Used for example by package manager Cabal for Haskell.
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Applications: Open Problems in Mathematics

Definition
A triple (a,b, c) ∈ N is called Pythagorean if a2 + b2 = c2.

Question
Can every set of numbers N = {1, 2, . . . ,n} be colored by two colors such that
there is no monochromatic Pythagorean triple?

The answer is no (n = 7825) and was found by a SAT solver in 20162. Previous
lower bound was that n = 7664 can be colored.

2https://www.cs.utexas.edu/~marijn/ptn/
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Applications: Open Problems in Mathematics

1. Define a formula Fi whose models are two-colorings of {1, 2, . . . , i} with no
monochromatic Pythagorean triples.

Fi =
∧

(a,b,c) is a Pythagorean triple
(xa ∨ xb ∨ xc) ∧ (¬xa ∨ ¬xb ∨ ¬xc)

2. F7824: 6492 variables and 18930 clauses; F7825: 6494 variables and 18944
clauses.

3. Preprocessing: reduce this to 3740 variables and 14652 clauses; and 3745
variables and 14672 clauses.

4. Use parallel SAT solver and tweak some of its heuristics.
5. Use a parallel machine with 800 cores for 2 days.
6. Find that F7824 is satisfiable and F7825 is unsatisfiable.
7. Get a largest unsatisfiability proof ever (200 terabytes).
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Thinking with Clauses



Clauses = Implications

Important view during this course: clauses = implications.

{A,B} (i.e., A ∨ B)

• ¬A→ B
• ¬B→ A

{A,B, C} (i.e., A ∨ B ∨ C)

• (¬A ∧ ¬B) → C
• (¬A ∧ ¬C) → B
• . . .
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2-SAT

2-CNF = formula in CNF with clauses of size 2
2-SAT = decide satisfiability of formula in 2-CNF

Example
Is the following 2-CNF formula satisfiable?

{A,B}, {¬B, C}, {¬C,A}
{¬A,¬B}, {B,¬A}, {C,¬D}

Theorem
2-SAT can be solved in linear time.
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2-SAT

Theorem
2-SAT can be solved in linear time.

Proof.
Let φ be in 2-CNF. Construct a graph G = (V, E) with

• V = {v | v ∈ Atoms(φ)} ∪ {¬v | v ∈ Atoms(φ)}
• E = {(¬a,b) | {a,b} ∈ φ}

φ is satisfiable ⇔ G has no cycle that contains both v and ¬v for some v
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Encoding Graph Coloring

Given an undirected graph G = (V, E), can it be colored by three colors (red, green,
blue) so that no edge has endpoints of the same color?

Encoding

• variables vr, vg, vb for each v ∈ V

• at least one color constraint: {vr, vg, vb} for each v ∈ V
• at most one color constraints {¬vr,¬vg}, {¬vg,¬vb}, {¬vr,¬vb} for each v ∈ V
• coloring constraint uc → ¬vc for each edge {u, v} ∈ E and each color
c ∈ {r,g,b} ≡ clause {¬uc,¬vc}

• models of the formula ≃ valid colorings
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Conversion to CNF: Tseitin encoding

Conversion to equivalent CNF can be exponential, but do we really need
equivalence?

Definition
The formulas φ and ψ are equisatisfiable if both are satisfiable or both
unsatisfiable.

Theorem
For each formula φ there exists an equisatisfiable formula φCNF with O(|φ|)
clauses of size at most three.

Proof.
Tseitin encoding.
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Conversion to CNF: Tseitin encoding by example

φ = (A ∧ B) ∨ C

A B C

∧

∨

ψ

ρ

(Aρ ↔ (A ∧ B)) ∧

(Aρ → (A ∧ B)) ∧ {¬Aρ,A}, {¬Aρ,B},
(Aρ ← (A ∧ B)) ∧ {¬A,¬B,Aρ},

(Aψ ↔ (Aρ ∨ C)) ∧

≡ (Aψ → (Aρ ∨ C)) ∧ ≡ {¬Aψ,Aρ, C},
(Aψ ← (Aρ ∨ C)) ∧ {¬Aρ,Aψ}, {¬C,Aψ},

Aψ

Aψ {Aψ}
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(Aψ ← (Aρ ∨ C)) ∧ {¬Aρ,Aψ}, {¬C,Aψ},

Aψ

Aψ {Aψ}
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Conversion to CNF: Tseitin encoding by example

φ = (A ∧ B) ∨ C

A B C

∧

∨ψ

ρ

(Aρ ↔ (A ∧ B)) ∧ (Aρ → (A ∧ B)) ∧

{¬Aρ,A}, {¬Aρ,B},

(Aρ ← (A ∧ B)) ∧

{¬A,¬B,Aρ},

(Aψ ↔ (Aρ ∨ C)) ∧ ≡ (Aψ → (Aρ ∨ C)) ∧

≡ {¬Aψ,Aρ, C},

(Aψ ← (Aρ ∨ C)) ∧

{¬Aρ,Aψ}, {¬C,Aψ},

Aψ Aψ

{Aψ}
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Conversion to CNF: Tseitin encoding

1. Create a new Tseitin variable Aψ for each subformula of φ.
2. Add unit clause {Aφ}.
3. Define semantics of the new Tseitin variables Aψ :

ψ definition of Aψ added clauses

ρ1 ∨ ρ2 Aψ → (Aρ1 ∨ Aρ2) {¬Aψ,Aρ1 ,Aρ2}
Aψ ← (Aρ1 ∨ Aρ2) {¬Aρ1 ,Aψ}, {¬Aρ2 ,Aψ}

ρ1 ∧ ρ2 Aψ → (Aρ1 ∧ Aρ2) {¬Aψ,Aρ1}, {¬Aψ,Aρ2}
Aψ ← (Aρ1 ∧ Aρ2) {¬Aρ1 ,¬Aρ2 ,Aψ}

¬ρ Aψ → ¬Aρ {¬Aψ,¬Aρ}
Aψ ← ¬Aρ {Aρ,Aψ}

ρ1 ↔ ρ2 Aψ → (Aρ1 ↔ Aρ2) {¬Aψ,¬Aρ1 ,Aρ2}, {¬Aψ,Aρ1 ,¬Aρ2}
Aψ ← (Aρ1 ↔ Aρ2) {¬Aρ1 ,¬Aρ2 ,Aψ}, {Aρ1 ,Aρ2 ,Aψ}
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Conversion to CNF: Tseitin encoding

Tseitin encoding

• often used in practice
• also works for DAG representation of formulas→ one Tseitin variable for
each node in the DAG

• transforming to increase shared subexpression helps (B ∧ A) ; (A ∧ B)
• additional preprocessing helps: (A ∨ (B ∨ C)) ; (A ∨ B ∨ C) and then encode
Aφ ↔ (A ∨ B ∨ C) as one Tseitin variable and four implications

• some of the clauses are not needed (Plaisted-Greenbaum)
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Next time

Classical SAT algorithms

• propositional resolution
• Davis-Putnam-Logemann-Loveland algorithm (DPLL)
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