
Classical Satisfiability Algorithms
IA085: Satisfiability and Automated Reasoning

Martin Jonáš

FI MUNI, Spring 2024

Last Time

• basic logical notions (entailment, equivalence, satisfiability, . . .)
• applications of satisfiability,
• conversion of a formula to equisatisfiable CNF of linear size

Today, we assume that all formulas are in CNF.

1 / 35

Our Goal

An algorithm that can decide satisfiability of formulas with thousands of variables
and millions of clauses.

2 / 35

Exhaustive search

Exhaustive search

1 ExhaustiveSearch(formula Φ) {
2 foreach truth assignment µ to Atoms(Φ)

3 res ← evaluate ϕ under µ

4 if res == ⊤
5 return SAT
6 return UNSAT
7 }

3 / 35

Exhaustive search in practice

• virtually never used in practice
• for unsatisfiable instances always needs 2|Atoms(φ)| steps
• for satisfiable instances can easily need exponential number of steps

Just buy a big powerful GPU?

• atoms on Earth ∼ 1050 ∼ number of truth assignments to 166 variables
• atoms in the universe ∼ 1080 ∼ number of truth assignments to 266 variables

4 / 35

Propositional resolution

Resolution rule

Rule for deriving new clauses from existing ones

{A, l1, . . . , ln} {¬A, l′1, . . . , l′m}
{l1, . . . , ln, l′1, . . . , l′m}

In general form
A ∨ φ ¬A ∨ ψ

φ ∨ ψ

Notation and terminology

• Resolve(x, C1, C2) returns the resulting formula
• Resolve(x, C1, C2) is called resolvent of C1 and C2 on x

Correctness
C1 ∧ C2 |= Resolve(x, C1, C2)

• Resolve(x, C1, C2) returns the resulting formula
• Resolve(x, C1, C2) is called resolvent of C1 and C2 on x

5 / 35

Resolution rule: notable instances

A ¬A ∨ B
B

=
A A→ B

B = modus ponens

¬B ¬A ∨ B
¬A =

¬B A→ B
¬A = modus tollens

¬A ∨ B ¬B ∨ C
¬A ∨ C =

A→ B B→ C
A→ C = transitivity

6 / 35

Resolution rule: notable instances

A ¬A ∨ B
B =

A A→ B
B = modus ponens

¬B ¬A ∨ B
¬A =

¬B A→ B
¬A = modus tollens

¬A ∨ B ¬B ∨ C
¬A ∨ C =

A→ B B→ C
A→ C = transitivity

6 / 35

Resolution rule: notable instances

A ¬A ∨ B
B =

A A→ B
B = modus ponens

¬B ¬A ∨ B
¬A =

¬B A→ B
¬A = modus tollens

¬A ∨ B ¬B ∨ C
¬A ∨ C =

A→ B B→ C
A→ C = transitivity

6 / 35

Resolution rule: notable instances

A ¬A ∨ B
B =

A A→ B
B = modus ponens

¬B ¬A ∨ B
¬A =

¬B A→ B
¬A = modus tollens

¬A ∨ B ¬B ∨ C
¬A ∨ C

=
A→ B B→ C

A→ C = transitivity

6 / 35

Resolution rule: notable instances

A ¬A ∨ B
B =

A A→ B
B = modus ponens

¬B ¬A ∨ B
¬A =

¬B A→ B
¬A = modus tollens

¬A ∨ B ¬B ∨ C
¬A ∨ C =

A→ B B→ C
A→ C = transitivity

6 / 35

Proving unsatisfiability by resolution

Observations

• if C1, C2 ∈ Φ and R is a resolvent of C1 and C2, then Φ |= R
• therefore Φ ≡ Φ ∪ {R}

Resolution method

• extend Φ with all possible resolvents of clauses from Φ

• if ∅ ∈ Φ at some point, return UNSAT
• if no more clauses can be derived and ∅ ̸∈ Φ, return SAT

7 / 35

Proving unsatisfiability by resolution

Observations

• if C1, C2 ∈ Φ and R is a resolvent of C1 and C2, then Φ |= R
• therefore Φ ≡ Φ ∪ {R}

Resolution method

• extend Φ with all possible resolvents of clauses from Φ

• if ∅ ∈ Φ at some point, return UNSAT
• if no more clauses can be derived and ∅ ̸∈ Φ, return SAT

7 / 35

Proving unsatisfiability by resolution

{{A,B},
{¬B, C},
{¬B,¬C},
{¬A,¬B,¬D},
{¬A,B,¬D},
{¬A,B,D}

{¬B},
{A},
{¬A,B},
{B},
∅ }

8 / 35

Proving unsatisfiability by resolution

{{A,B},
{¬B, C},
{¬B,¬C},
{¬A,¬B,¬D},
{¬A,B,¬D},
{¬A,B,D}

{¬B},
{A},
{¬A,B},
{B},
∅ }

8 / 35

Proving unsatisfiability by resolution

{{A,B},
{¬B, C},
{¬B,¬C},
{¬A,¬B,¬D},
{¬A,B,¬D},
{¬A,B,D}
{¬B},

{A},
{¬A,B},
{B},
∅ }

8 / 35

Proving unsatisfiability by resolution

{{A,B},
{¬B, C},
{¬B,¬C},
{¬A,¬B,¬D},
{¬A,B,¬D},
{¬A,B,D}
{¬B},

{A},
{¬A,B},
{B},
∅ }

8 / 35

Proving unsatisfiability by resolution

{{A,B},
{¬B, C},
{¬B,¬C},
{¬A,¬B,¬D},
{¬A,B,¬D},
{¬A,B,D}
{¬B},
{A},

{¬A,B},
{B},
∅ }

8 / 35

Proving unsatisfiability by resolution

{{A,B},
{¬B, C},
{¬B,¬C},
{¬A,¬B,¬D},
{¬A,B,¬D},
{¬A,B,D}
{¬B},
{A},

{¬A,B},
{B},
∅ }

8 / 35

Proving unsatisfiability by resolution

{{A,B},
{¬B, C},
{¬B,¬C},
{¬A,¬B,¬D},
{¬A,B,¬D},
{¬A,B,D}
{¬B},
{A},
{¬A,B},

{B},
∅ }

8 / 35

Proving unsatisfiability by resolution

{{A,B},
{¬B, C},
{¬B,¬C},
{¬A,¬B,¬D},
{¬A,B,¬D},
{¬A,B,D}
{¬B},
{A},
{¬A,B},

{B},
∅ }

8 / 35

Proving unsatisfiability by resolution

{{A,B},
{¬B, C},
{¬B,¬C},
{¬A,¬B,¬D},
{¬A,B,¬D},
{¬A,B,D}
{¬B},
{A},
{¬A,B},
{B},

∅ }

8 / 35

Proving unsatisfiability by resolution

{{A,B},
{¬B, C},
{¬B,¬C},
{¬A,¬B,¬D},
{¬A,B,¬D},
{¬A,B,D}
{¬B},
{A},
{¬A,B},
{B},

∅ }

8 / 35

Proving unsatisfiability by resolution

{{A,B},
{¬B, C},
{¬B,¬C},
{¬A,¬B,¬D},
{¬A,B,¬D},
{¬A,B,D}
{¬B},
{A},
{¬A,B},
{B},
∅ }

8 / 35

Resolution Method: Properties

Theorem (Soundness)
If the resolution method returns UNSAT, the formula Φ is unsatisfiable.

Theorem (Completeness)
If the formula is unsatisfiable, the resolution method returns UNSAT.

9 / 35

Resolution Method: Properties

Resolution method is not used in practice

• the size of Φ never decreases
• the size of Φ grows quickly (often exponentially)
• as presented, the algorithm is not deterministic

10 / 35

Systematic resolution: Davis-Putnam algorithm

Davis-Putnam algorithm (1960)

• eagerly apply simple resolution cases first -- unit resolution (unit
propagation)

• fix an order of variables in which to resolve
• for a variable x, use resolution on all clauses that can be resolved on x at
once and remove the original clauses

11 / 35

Davis-Putnam algorithm: Unit propagation

Variable assignment

• for example {
{A,B}, {C,¬D}, {¬A,D}

}∣∣∣
A

= {{C,¬D}, {D}}

• Φ
∣∣
v = {C \ {¬v} | C ∈ Φ and v ̸∈ C}

• similarly for Φ
∣∣
¬v

Unit propagation

• if Φ contains a unit clause ({l} ∈ Φ), we can directly assign its value
• for example

{{A,¬B}, {B}, {B, C}, {C,¬D,A}} ; {{A}, {C,¬D,A}}

12 / 35

Davis-Putnam algorithm: Variable elimination

• divide Φ = Ψ ∪Ψx ∪Ψ¬x where clauses in Ψ do not contain x, clauses in Ψx
contain x positively, and Ψ¬x contain x negatively

• EliminateVar(x,Φ) = Ψ ∪ {Resolve(x, C1, C2) | C1 ∈ Ψx, C2 ∈ Ψ¬x} without
tautological clauses

Φ = {{A,B}, {¬B, C}, {¬B,¬C}, {¬A,¬B,¬D}, {¬A,B,¬D}, {¬A,B,D}}

EliminateVar(A,Φ) = {{¬B, C}, {¬B,¬C},
{B,¬B,¬D},
{B,¬D},
{B,D}}

13 / 35

Davis-Putnam algorithm: Variable elimination

• divide Φ = Ψ ∪Ψx ∪Ψ¬x where clauses in Ψ do not contain x, clauses in Ψx
contain x positively, and Ψ¬x contain x negatively

• EliminateVar(x,Φ) = Ψ ∪ {Resolve(x, C1, C2) | C1 ∈ Ψx, C2 ∈ Ψ¬x} without
tautological clauses

Φ = {{A,B}, {¬B, C}, {¬B,¬C}, {¬A,¬B,¬D}, {¬A,B,¬D}, {¬A,B,D}}

EliminateVar(A,Φ) = {{¬B, C}, {¬B,¬C},
{B,¬B,¬D},
{B,¬D},
{B,D}}

13 / 35

Davis-Putnam Algorithm

1 DP(formula Φ):
2 while Φ contains unit clause {l}:
3 Φ← Φ

∣∣
l

4

5 if Φ = ∅ return SAT
6 if ∅ ∈ Φ return UNSAT
7

8 v ← PickVariable(Φ)
9 Φ← EliminateVar(v,Φ)

10 return DP(Φ)

14 / 35

Davis-Putnam algorithm: Properties

Theorem (Soundness)
If DP(Φ) returns UNSAT, the formula Φ is unsatisfiable.

Theorem (Completeness)
If the formula Φ is unsatisfiable, DPLL(Φ) returns UNSAT.

Proof idea.
Invariant: at every step, the formula Φ is equisatisfiable with the original.

• Unit propagation is satisfiability preserving.
• Variable elimination is satisfiability preserving.

Corollary (Complexity)
Unless P = NP, the procedure DP does not run in polynomial time.

15 / 35

Davis-Putnam algorithm: Properties

Theorem (Soundness)
If DP(Φ) returns UNSAT, the formula Φ is unsatisfiable.

Theorem (Completeness)
If the formula Φ is unsatisfiable, DPLL(Φ) returns UNSAT.

Proof idea.
Invariant: at every step, the formula Φ is equisatisfiable with the original.

• Unit propagation is satisfiability preserving.
• Variable elimination is satisfiability preserving.

Corollary (Complexity)

Unless P = NP, the procedure DP does not run in polynomial time.

15 / 35

Davis-Putnam algorithm: Properties

Theorem (Soundness)
If DP(Φ) returns UNSAT, the formula Φ is unsatisfiable.

Theorem (Completeness)
If the formula Φ is unsatisfiable, DPLL(Φ) returns UNSAT.

Proof idea.
Invariant: at every step, the formula Φ is equisatisfiable with the original.

• Unit propagation is satisfiability preserving.
• Variable elimination is satisfiability preserving.

Corollary (Complexity)
Unless P = NP, the procedure DP does not run in polynomial time.

15 / 35

Resolution lower bounds

Pigeonnhole formula PHPn

• Can n+ 1 pigeons be assigned to n boxes such that there is at most one
pigeon in one box?

• variables xi,j -- pigeon i is in the box j
• for each 1 ≤ i ≤ n+ 1 a clause

∨
1≤j≤n xi,j

• for each 1 ≤ j ≤ n and 1 ≤ i < i′ ≤ n+ 1 a clause ¬xi,j ∨ ¬xi′,j
• obviously unsatisfiable

Theorem (Haken, 1985)
Every resolution proof of PHPn has size 2Ω(n).

16 / 35

Resolution lower bounds

Pigeonnhole formula PHPn

• Can n+ 1 pigeons be assigned to n boxes such that there is at most one
pigeon in one box?

• variables xi,j -- pigeon i is in the box j
• for each 1 ≤ i ≤ n+ 1 a clause

∨
1≤j≤n xi,j

• for each 1 ≤ j ≤ n and 1 ≤ i < i′ ≤ n+ 1 a clause ¬xi,j ∨ ¬xi′,j
• obviously unsatisfiable

Theorem (Haken, 1985)
Every resolution proof of PHPn has size 2Ω(n).

16 / 35

Davis-Putnam-Logemann-Loveland
algorithm (DPLL)

DPLL

Davis-Putnam-Logemann-Loveland algorithm (1962)

• replace the resolution step in DP by variable assignment
• assign one value; if UNSAT, backtrack and try the opposite value
• eagerly apply unit propagation whenever possible

17 / 35

DPLL

1 DPLL(formula Φ):
2 while Φ contains unit clause {l}:
3 Φ← Φ

∣∣
l

4

5 if Φ = ∅ return SAT
6 if ∅ ∈ Φ return UNSAT
7

8 v ← PickVariable(Φ)
9 if DPLL(Φ

∣∣
v) == SAT:

10 return SAT
11 return DPLL(Φ

∣∣
¬v)

18 / 35

DPLL: Example

{{A,B}, {¬A,B}, {¬A, C,¬B}, {¬A,¬C,¬B}}

{{B}, {C,¬B}, {¬C,¬B}} {{B}}

{{C}, {¬C}} ∅
SAT

{∅}
UNSAT

A

B

C

¬A

B

19 / 35

DPLL: Example

{{A,B}, {¬A,B}, {¬A, C,¬B}, {¬A,¬C,¬B}}

{{B}, {C,¬B}, {¬C,¬B}} {{B}}

{{C}, {¬C}} ∅
SAT

{∅}
UNSAT

A

B

C

¬A

B

19 / 35

DPLL: Example

{{A,B}, {¬A,B}, {¬A, C,¬B}, {¬A,¬C,¬B}}

{{B}, {C,¬B}, {¬C,¬B}} {{B}}

{{C}, {¬C}} ∅
SAT

{∅}
UNSAT

A

B

C

¬A

B

19 / 35

DPLL: Example

{{A,B}, {¬A,B}, {¬A, C,¬B}, {¬A,¬C,¬B}}

{{B}, {C,¬B}, {¬C,¬B}} {{B}}

{{C}, {¬C}} ∅
SAT

{∅}
UNSAT

A

B

C

¬A

B

19 / 35

DPLL: Example

{{A,B}, {¬A,B}, {¬A, C,¬B}, {¬A,¬C,¬B}}

{{B}, {C,¬B}, {¬C,¬B}} {{B}}

{{C}, {¬C}} ∅
SAT

{∅}
UNSAT

A

B

C

¬A

B

19 / 35

DPLL: Example

{{A,B}, {¬A,B}, {¬A, C,¬B}, {¬A,¬C,¬B}}

{{B}, {C,¬B}, {¬C,¬B}} {{B}}

{{C}, {¬C}} ∅
SAT

{∅}
UNSAT

A

B

C

¬A

B

19 / 35

DPLL: Example

{{A,B}, {¬A,B}, {¬A, C,¬B}, {¬A,¬C,¬B}}

{{B}, {C,¬B}, {¬C,¬B}} {{B}}

{{C}, {¬C}} ∅
SAT

{∅}
UNSAT

A

B

C

¬A

B

19 / 35

DPLL: Example

{{A,B}, {¬A,B}, {¬A, C,¬B}, {¬A,¬C,¬B}}

{{B}, {C,¬B}, {¬C,¬B}} {{B}}

{{C}, {¬C}} ∅
SAT

{∅}
UNSAT

A

B

C

¬A

B

19 / 35

DPLL: Properties

Theorem (Soundness)
If DPLL(Φ) returns SAT, the formula Φ is satisfiable.

Theorem (Completeness)
If the formula Φ is satisfiable, DPLL(Φ) returns SAT.

Corollary (Complexity)
Unless P = NP, the procedure DPLL does not run in polynomial time.

20 / 35

UNSAT DPLL → Resolution

{{A,B}1, {¬B, C}2, {¬B,¬C}3, {¬A,¬B,¬D}4, {¬A,B,¬D}5, {¬A,B,D}6}

{{¬B, C}2, {¬B,¬C}3, {¬B,¬D}4, {B,¬D}5, {B,D}6} {{B}1, {¬B, C}2, {¬B,¬C}3}

{{C}2, {¬C}3, {¬D}4} {{¬D}5, {D}6} {{C}2, {¬C}3}

{∅3, {¬D}4} {∅6} {∅3}

{¬B} {¬A,B} {¬B}

∅

{¬A} {A}

{¬B} {¬A,B} {¬B}

{¬B,¬C}3 {¬A,B,D}6 {¬B,¬C}3{¬B, C}2 {¬A,B,¬D}5 {¬B, C}2

{A,B}1

A

B

C

¬B

¬D

¬A

B

C

A

B

C

¬B

¬D

¬A

B

C

21 / 35

UNSAT DPLL → Resolution

{{A,B}1, {¬B, C}2, {¬B,¬C}3, {¬A,¬B,¬D}4, {¬A,B,¬D}5, {¬A,B,D}6}

{{¬B, C}2, {¬B,¬C}3, {¬B,¬D}4, {B,¬D}5, {B,D}6} {{B}1, {¬B, C}2, {¬B,¬C}3}

{{C}2, {¬C}3, {¬D}4} {{¬D}5, {D}6} {{C}2, {¬C}3}

{∅3, {¬D}4} {∅6} {∅3}

{¬B} {¬A,B} {¬B}

∅

{¬A} {A}

{¬B} {¬A,B} {¬B}

{¬B,¬C}3 {¬A,B,D}6 {¬B,¬C}3{¬B, C}2 {¬A,B,¬D}5 {¬B, C}2

{A,B}1

A

B

C

¬B

¬D

¬A

B

C

A

B

C

¬B

¬D

¬A

B

C

21 / 35

UNSAT DPLL → Resolution

{{A,B}1, {¬B, C}2, {¬B,¬C}3, {¬A,¬B,¬D}4, {¬A,B,¬D}5, {¬A,B,D}6}

{{¬B, C}2, {¬B,¬C}3, {¬B,¬D}4, {B,¬D}5, {B,D}6} {{B}1, {¬B, C}2, {¬B,¬C}3}

{{C}2, {¬C}3, {¬D}4} {{¬D}5, {D}6} {{C}2, {¬C}3}

{∅3, {¬D}4} {∅6} {∅3}

{¬B} {¬A,B} {¬B}

∅

{¬A} {A}

{¬B} {¬A,B} {¬B}

{¬B,¬C}3 {¬A,B,D}6 {¬B,¬C}3

{¬B, C}2 {¬A,B,¬D}5 {¬B, C}2

{A,B}1

A

B

C

¬B

¬D

¬A

B

C

A

B

C

¬B

¬D

¬A

B

C

21 / 35

UNSAT DPLL → Resolution

{{A,B}1, {¬B, C}2, {¬B,¬C}3, {¬A,¬B,¬D}4, {¬A,B,¬D}5, {¬A,B,D}6}

{{¬B, C}2, {¬B,¬C}3, {¬B,¬D}4, {B,¬D}5, {B,D}6} {{B}1, {¬B, C}2, {¬B,¬C}3}

{{C}2, {¬C}3, {¬D}4} {{¬D}5, {D}6} {{C}2, {¬C}3}

{∅3, {¬D}4} {∅6} {∅3}

{¬B} {¬A,B} {¬B}

∅

{¬A} {A}

{¬B} {¬A,B} {¬B}

{¬B,¬C}3 {¬A,B,D}6 {¬B,¬C}3{¬B, C}2 {¬A,B,¬D}5 {¬B, C}2

{A,B}1

A

B

C

¬B

¬D

¬A

B

C

A

B

C

¬B

¬D

¬A

B

C

21 / 35

UNSAT DPLL → Resolution

{{A,B}1, {¬B, C}2, {¬B,¬C}3, {¬A,¬B,¬D}4, {¬A,B,¬D}5, {¬A,B,D}6}

{{¬B, C}2, {¬B,¬C}3, {¬B,¬D}4, {B,¬D}5, {B,D}6} {{B}1, {¬B, C}2, {¬B,¬C}3}

{{C}2, {¬C}3, {¬D}4} {{¬D}5, {D}6} {{C}2, {¬C}3}

{∅3, {¬D}4} {∅6} {∅3}

{¬B} {¬A,B} {¬B}

∅

{¬A} {A}

{¬B} {¬A,B} {¬B}

{¬B,¬C}3 {¬A,B,D}6 {¬B,¬C}3{¬B, C}2 {¬A,B,¬D}5 {¬B, C}2

{A,B}1

A

B

C

¬B

¬D

¬A

B

C

A

B

C

¬B

¬D

¬A

B

C

21 / 35

UNSAT DPLL → Resolution

{{A,B}1, {¬B, C}2, {¬B,¬C}3, {¬A,¬B,¬D}4, {¬A,B,¬D}5, {¬A,B,D}6}

{{¬B, C}2, {¬B,¬C}3, {¬B,¬D}4, {B,¬D}5, {B,D}6} {{B}1, {¬B, C}2, {¬B,¬C}3}

{{C}2, {¬C}3, {¬D}4} {{¬D}5, {D}6} {{C}2, {¬C}3}

{∅3, {¬D}4} {∅6} {∅3}

{¬B} {¬A,B} {¬B}

∅

{¬A} {A}

{¬B} {¬A,B} {¬B}

{¬B,¬C}3 {¬A,B,D}6 {¬B,¬C}3{¬B, C}2 {¬A,B,¬D}5 {¬B, C}2

{A,B}1

A

B

C

¬B

¬D

¬A

B

C

A

B

C

¬B

¬D

¬A

B

C

21 / 35

UNSAT DPLL → Resolution

{{A,B}1, {¬B, C}2, {¬B,¬C}3, {¬A,¬B,¬D}4, {¬A,B,¬D}5, {¬A,B,D}6}

{{¬B, C}2, {¬B,¬C}3, {¬B,¬D}4, {B,¬D}5, {B,D}6} {{B}1, {¬B, C}2, {¬B,¬C}3}

{{C}2, {¬C}3, {¬D}4} {{¬D}5, {D}6} {{C}2, {¬C}3}

{∅3, {¬D}4} {∅6} {∅3}

{¬B} {¬A,B} {¬B}

∅

{¬A} {A}

{¬B} {¬A,B} {¬B}

{¬B,¬C}3 {¬A,B,D}6 {¬B,¬C}3{¬B, C}2 {¬A,B,¬D}5 {¬B, C}2

{A,B}1

A

B

C

¬B

¬D

¬A

B

C

A

B

C

¬B

¬D

¬A

B

C

21 / 35

UNSAT DPLL → Resolution

A run of DPLL with result UNSAT corresponds to a tree resolution proof

• replace all derived ∅ leaves by the corresponding original input clauses
• to each unit propagation step, add the original clause of the unit clause that
triggered the unit propagation

• complete the resolution

Corollary (Time Complexity)
DPLL has exponential time complexity (e.g., for PHP formulas).

Theorem (Space Complexity)
DPLL has polynomial space complexity.

22 / 35

DPLL in practice

• DPLL is almost never used in practice
• basis of Conflict-Driven Clause Learning (CDCL) used in most of the modern
SAT solvers

23 / 35

Implementing DPLL

Real implementation of DPLL

• the previous theoretical description is not suitable for practical
implementation

• each modification of formula Φ is too expensive
• do not modify the formula, modify the partial assignment instead

Clause status

• contains satisfied literal→ satisfied
• all literals are assigned opposite values→ falsified / conflict clause
• one literal is unassigned, other literals are assigned opposite values→ unit
clause

• otherwise undetermined
24 / 35

DPLL: Searching in assignments

(A ∨ B) ∧ (¬A ∨ B) ∧ (¬A ∨ C ∨ ¬B) ∧ (¬A ∨ ¬C ∨ ¬B)

[]

[A] [¬A]

[A,B] [¬A,B]
SAT

[A,B, C]
CONFLICT

decide A

propagate B

propagate C

backtrack ¬A

propagate B

25 / 35

DPLL: Searching in assignments

(A ∨ B) ∧ (¬A ∨ B) ∧ (¬A ∨ C ∨ ¬B) ∧ (¬A ∨ ¬C ∨ ¬B)

[]

[A] [¬A]

[A,B] [¬A,B]
SAT

[A,B, C]
CONFLICT

decide A

propagate B

propagate C

backtrack ¬A

propagate B

25 / 35

DPLL: Searching in assignments

(A ∨ B) ∧ (¬A ∨ B) ∧ (¬A ∨ C ∨ ¬B) ∧ (¬A ∨ ¬C ∨ ¬B)

[]

[A] [¬A]

[A,B] [¬A,B]
SAT

[A,B, C]
CONFLICT

decide A

propagate B

propagate C

backtrack ¬A

propagate B

25 / 35

DPLL: Searching in assignments

(A ∨ B) ∧ (¬A ∨ B) ∧ (¬A ∨ C ∨ ¬B) ∧ (¬A ∨ ¬C ∨ ¬B)

[]

[A] [¬A]

[A,B] [¬A,B]
SAT

[A,B, C]
CONFLICT

decide A

propagate B

propagate C

backtrack ¬A

propagate B

25 / 35

DPLL: Searching in assignments

(A ∨ B) ∧ (¬A ∨ B) ∧ (¬A ∨ C ∨ ¬B) ∧ (¬A ∨ ¬C ∨ ¬B)

[]

[A] [¬A]

[A,B] [¬A,B]
SAT

[A,B, C]
CONFLICT

decide A

propagate B

propagate C

backtrack ¬A

propagate B

25 / 35

DPLL: Searching in assignments

(A ∨ B) ∧ (¬A ∨ B) ∧ (¬A ∨ C ∨ ¬B) ∧ (¬A ∨ ¬C ∨ ¬B)

[]

[A] [¬A]

[A,B] [¬A,B]
SAT

[A,B, C]
CONFLICT

decide A

propagate B

propagate C

backtrack ¬A

propagate B

25 / 35

DPLL: Searching in assignments

(A ∨ B) ∧ (¬A ∨ B) ∧ (¬A ∨ C ∨ ¬B) ∧ (¬A ∨ ¬C ∨ ¬B)

[]

[A] [¬A]

[A,B] [¬A,B]
SAT

[A,B, C]
CONFLICT

decide A

propagate B

propagate C

backtrack ¬A

propagate B

25 / 35

DPLL: Searching in assignments

(A ∨ B) ∧ (¬A ∨ B) ∧ (¬A ∨ C ∨ ¬B) ∧ (¬A ∨ ¬C ∨ ¬B)

[]

[A] [¬A]

[A,B] [¬A,B]
SAT

[A,B, C]
CONFLICT

decide A

propagate B

propagate C

backtrack ¬A

propagate B

25 / 35

Partial assignment representation

Trail

• stack of currently assigned literals
• trail = [A, ¬C]
• used during backtracking

Map of values

• maps each variable to true/false/unknown
• value[A] = true, value[B] = unknown, value[C] = false
• used to evaluate clauses

26 / 35

Decision and Backtracking

• do not use recursion for backtracking, manage the stack explicitly (faster and
will be useful later)

• keep list of positions of decision literals that can be reverted if needed
• e.g. for trail = [A, ¬B, C, D, ¬E], decisions = [0, 2]:

– literals trail[0] = A and trail[2] = C were decisions
– other literals were unit propagated or set during backtracking

Desired functionalities

• Decide(x,v): sets x to v; can be flipped using backtracking
• Assign(x,v): sets x to v; cannot be flipped using backtracking
• Backtrack(): undo all assignments up to the last decision, Assign the
decided variable to the opposite value

• How to implement?
27 / 35

Unit propagation

UnitPropagate()

• detects unit clauses
• keeps a queue of unit assignments that have to be performed
• assigns value to all unit literals until fixed point
• can detect conflicts

28 / 35

DPLL: Realistic

1 def DPLL(formula Φ):
2 InitializeDatastructures()
3

4 if UnitPropagation() == CONFLICT:
5 return UNSAT
6

7 while not all variables are assigned:
8 v ← PickUnassignedVariable()
9

10 Decide(v, false)
11 while UnitPropagation() == CONFLICT:
12 if decisions == []:
13 return UNSAT
14 Backtrack()
15

16 return SAT

29 / 35

Unit propagation: naive

Naive unit propagation

• go through the list of clauses
• unit clause→ Assign the unassigned literal and repeat
• clause that has all literals assigned to false → return CONFLICT

Less naive unit propagation

• all unit propagations (except the first one) occur after variable
decision/assignment

• precompute for each literal occurs[l], the list of clauses that contain l
• after decision/assignment of l, only check the clauses in occurs[¬l]

30 / 35

Unit propagation: naive

Naive unit propagation

• go through the list of clauses
• unit clause→ Assign the unassigned literal and repeat
• clause that has all literals assigned to false → return CONFLICT

Less naive unit propagation

• all unit propagations (except the first one) occur after variable
decision/assignment

• precompute for each literal occurs[l], the list of clauses that contain l
• after decision/assignment of l, only check the clauses in occurs[¬l]

30 / 35

Unit propagation: need something better

Still not good enough, a variable can occur in a large number of clauses.

Most of the runtime is spent in unit propagation→ must be as cheap as possible!

Idea
Do not check clauses for which we are sure that contain at least two unassigned
literals.

31 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment:

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment:

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment:

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y , v

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y , v

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y , v , ¬x

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x ∨ ¬y ∨ z
↑
∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y , v , ¬x

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x ∨ ¬y ∨ z
↑
∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y , v , ¬x , ¬u

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x ∨ ¬y ∨ z
↑
∨ ¬v ∨

↓
¬w ∨ u

Variable assignment: y , v , ¬x , ¬u

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x ∨ ¬y ∨ z
↑
∨ ¬v ∨

↓
¬w ∨ u

Variable assignment: y , v , ¬x , ¬u , w

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x ∨ ¬y ∨ z
↑
∨ ¬v ∨

↓
¬w ∨ u

Variable assignment: y , v , ¬x , ¬u , w

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x ∨ ¬y ∨ z
↑
∨ ¬v ∨

↓
¬w ∨ u

Variable assignment: y , v , ¬x , ¬u , w

Unit: z
32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x ∨ ¬y ∨ z
↑
∨ ¬v ∨

↓
¬w ∨ u

Variable assignment: y , v , ¬x , ¬u

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x ∨ ¬y ∨ z
↑
∨ ¬v ∨

↓
¬w ∨ u

Variable assignment: y , v , ¬x , ¬u

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x ∨ ¬y ∨ z
↑
∨ ¬v ∨

↓
¬w ∨ u

Variable assignment: y , v , ¬x

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x ∨ ¬y ∨ z
↑
∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y , v , ¬x

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x ∨ ¬y ∨ z
↑
∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y , v

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y , v

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment: y

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment:

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment:

Unit: z

32 / 35

Unit propagation: head-tail lists

Head-tail lists (SATO solver, 1997)

• for each clause, remember positions of its first and last unassigned literals
(head and tail)

• for each literal, remember list of clauses where it is head and where it is tail
• during unit propagation, only check clauses where the negation of literal is
head/tail

• needs to maintain the invariant during backtracking

x
↑
∨ ¬y ∨ z ∨ ¬v ∨ ¬w ∨

↓
u

Variable assignment:

Unit: z

32 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x
↑
∨
↓
¬y ∨ z ∨ ¬v ∨ ¬w ∨ u

Variable assignment:

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x
↑
∨
↓
¬y ∨ z ∨ ¬v ∨ ¬w ∨ u

Variable assignment:

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x
↑
∨
↓
¬y ∨ z ∨ ¬v ∨ ¬w ∨ u

Variable assignment:

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x
↑
∨
↓
¬y ∨ z ∨ ¬v ∨ ¬w ∨ u

Variable assignment: y

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x
↑
∨ ¬y ∨

↓
z ∨ ¬v ∨ ¬w ∨ u

Variable assignment: y

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x
↑
∨ ¬y ∨

↓
z ∨ ¬v ∨ ¬w ∨ u

Variable assignment: y , v

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x
↑
∨ ¬y ∨

↓
z ∨ ¬v ∨ ¬w ∨ u

Variable assignment: y , v

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x
↑
∨ ¬y ∨

↓
z ∨ ¬v ∨ ¬w ∨ u

Variable assignment: y , v , ¬x

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v , ¬x

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v , ¬x , ¬u

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v , ¬x , ¬u

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v , ¬x , ¬u , w

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v , ¬x , ¬u , w

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v , ¬x , ¬u , w

Unit: z
33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v , ¬x , ¬u

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v , ¬x , ¬u

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v , ¬x

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v , ¬x

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y , v

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment: y

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment:

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment:

Unit: z

33 / 35

Unit propagation: two watched literals

Two watched literals (ZCHAFF solver, 2001)

• for each clause, remember positions of its two unassigned literals (watched
literals)

• for each literal, remember list of clauses where it is watched
• during unit propagation, only check clauses where the negation of literal is
watched

• nothing needs to be done during backtracking!

x ∨ ¬y ∨
↓
z ∨ ¬v ∨ ¬w

↑
∨ u

Variable assignment:

Unit: z

33 / 35

Next time

Conflict-Driven Clause Learning (CDCL)

• DPLL search (unit propagation, backtracking)
• + using resolution to learn new clauses after conflict
• + non-chronological backtracking

Modern SAT Solvers

• CDCL
• + two watched literal scheme
• + variable decision heuristics
• + dynamic restarts
• + preprocessing/inprocessing

34 / 35

Next time

Conflict-Driven Clause Learning (CDCL)

• DPLL search (unit propagation, backtracking)
• + using resolution to learn new clauses after conflict
• + non-chronological backtracking

Modern SAT Solvers

• CDCL
• + two watched literal scheme
• + variable decision heuristics
• + dynamic restarts
• + preprocessing/inprocessing

34 / 35

Project

You can already start implementing your SAT solver

• input in DIMACS format
• DPLL-like assignment decisions and backtracking
• unit propagation with two watched literal scheme

35 / 35

	Exhaustive search
	Propositional resolution
	Davis-Putnam-Logemann-Loveland algorithm (DPLL)
	Implementing DPLL

