Conflict-Driven Clause Learning
IA085: Satisfiability and Automated Reasoning

Martin Jonas

FI MUNI, Spring 2024

- propositional resolution
- Davis-Putnam algorithm
- Davis-Putnam-Logemann-Loveland algorithm (DPLL)

- practical implementation of DPLL

1/32

DPLL: Reminder

1 def DPLL(formula ¢):

2 InitializeDatastructures()

3

4 if UnitPropagation() == CONFLICT:

5 return UNSAT

6

7 while not all variables are assigned:

8 (var, polarity) <« PickUnassignedVariable()
9

10 Decide(var, polarity)

1 while UnitPropagation() == CONFLICT:
12 if decisions == []:

3 return UNSAT

14 Backtrack()

15

16 return SAT

2/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {_'Ca Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

A 0]

3/32

DPLL: Not so clever

Y= {) {87_‘A7C}27 {A7_‘87C}37
{_'Ca Da E}47 {_'Ca Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {_'C7Da_'E}57 5 {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {"CvﬁDvﬁE}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
) {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {"C: Da"E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

Y = {{_‘Av_‘Ba C}17) {A7_‘BaC}37
{_'Ca Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {_'C7Da_'E}57 5 {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {"CvﬁDvﬁE}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
) {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {"C: Da"E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

Y= {{_‘Av_‘Ba C}17 {87_‘A7C}27 5
{_'Ca Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'Ca Da E}47 {_'C7Da_'E}57 5 {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'C7Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {"CvﬁDvﬁE}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
) {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'C7Da E}47 {"C: Da"E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'C7Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'C7Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'C7Da E}47 {_'C7Da_'E}57 5 {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'C7Da E}47 {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {"CvﬁDvﬁE}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
) {_'C7Da_'E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

3/32

DPLL: Not so clever

o = {{-A,-B,Ch, {B,-A,C},, {A,-B,(C}s,
{_'C7Da E}47 {"C: Da"E}57 {_'Ca_'Da E}ﬁv {_'Ca_‘Dv_'E}7}

DPLL: Not so clever

Y = {{ﬁAvﬁB-/ C}17 {B,“A,C}Q./ {A,“B, C}?n
{“C‘, D7 E}47 {“C‘, DvﬁE}5v {“CaﬁDa E}6: {ﬁCs“D:ﬁE}7}

Conflict-Driven Clause Learning

Conflict-Driven Clause Learning (cbcL)

- goal: avoid making similar mistakes multiple times
- after each conflict, perform
that generalizes the reasons for the conflict

- backtrack (backjumping)

4132

Conflict Analysis

Reminder: What do we store

Y = {{_'Aa_'B>C}'|a {B,ﬁA,C}Z, {Av_'Ba C}?:;
{_'C7D7E}‘+7 {_'CvaﬁE}& {ﬂC,—\D, E}67 {_‘C7_‘D7ﬁE}7}

trail = [A, B, C, D, E]
decisions = [0, 1, 3]

5/32

Reminder: What do we store

Y = {{_'Aa_'B>C}'|a {B,ﬁA,C}Z, {Av_'B; C}?:;
{_'CvaE}‘H {—|C,D,—|E}5, {ﬂC,—\D, E}67 {_‘C7_‘D7ﬁE}7}

trail = [A, B, C, D, E]
decisions = [0, 1, 3]

The decisions partition trail into

- decision literal followed by unit
propagations
- level 1: [A], level 2: [B, C], level 3: [D, E]

5/32

Antecedents

= clause that caused the unit propagation

6/32

Antecedents

= clause that caused the unit propagation

¥ = {{_‘A7_‘87C}17 {87_‘A7C}27 {A7_‘Ba C}B;
{"C7D>E}47 {"C7D)"E}57 {ﬁC,‘!D, E}67 {"C7"D)ﬁE}7}

trail = [A, B, C, D, E]
decisions = [0, 1, 3]
reason[A] = undefined
reason[B] = undefined
reason[C] =1
reason[D] = undefined

reason[E] = 6
6/32

Implication graph

Representation of dependencies between currently assigned literals.

Vertices

- one vertex [@d for each assigned literal
- one special vertex x
- vertices labeled by their decision levels (l@d is literal [with decision level d)

Edges

- edges are labeled by clauses
- 1S kif=lisin the current conflicting clause C

. [Creason[r]

rif ris unit propagated literal and =l € C,easonfy and

value[-l] = false
7132

Implication graph: example

¥ = {{_‘A7_‘87C}17 {Ba_‘Avc}27 {A7_‘Ba C}3;
{"C7D>E}47 {"C7D)"E}57 {ﬁC,‘!D, E}67 {"C7"D)ﬁE}7}

trail = [A, B, C, D, E]
decisions = [0, 1, 3]
reason[A] = undefined
reason[B] = undefined
reason[C] =1
reason[D] = undefined

reason[E] = 6

8/32

Clause Learning

Conflict sets

After reaching a conflict, the implication graph encodes several =a
set of literals that causes the conflict.

Each conflict set corresponds to a that prohibits the conflict.

Example

- Conflict set {A, =B, C} = any assignment with u(A) =T, u(B) = L, u(C) =T
causes the conflict.

- Conflict clause {—A, B,—-C}

9/32

Separating Cuts

Separating cut

- cut = partition of vertices into two disjoint sets
- separating cut = decision vertices in one set, the conflict vertex is in the other
- each separating cut corresponds to a conflict set

From left to right correspond to conflict
sets

- {A,B,D} — clause {—-A, =B, =D}
- {C,D} — clause {—=C,—D}
- {C,E,D} — clause {—C,—E,-D}

10/ 32

Separating Cuts

Separating cut

- cut = partition of vertices into two disjoint sets
- separating cut = decision vertices in one set, the conflict vertex is in the other
- each separating cut corresponds to a conflict set

From left to right correspond to conflict
sets

- {A,B,D} — clause {—-A, =B, =D}

- {C,D} — clause {—=C,—D}

- {C,E,D} — clause {—C,—E,-D}
Which is the best one?

10/32

Properties of learnt clauses

The learnt conflict clauses should be

: prune the search space as much as possible

= contain only one literal at the current decision level

/32

Unique Implication Point (UIP)

- avertex V # k such that all paths from the current decision vertex to x go
through Vv

- always exists (why?)

- first UIP = closest to the conflict

Unique implication points

m, -
, - D (last UIP)

| co2 . E (first UIP)
mc

L E@3
Ce

G

12/32

Computing the conflict clause

1. start with the conflicting clause
2. resolve with the reason clauses until the clause contains only one literal at
the current decision level (asserting first UIP)

% G {~C,~D, ~E}
— Fo3
Cs
G

13/32

Computing the conflict clause

1. start with the conflicting clause
2. resolve with the reason clauses until the clause contains only one literal at
the current decision level (asserting first UIP)

G

—

{—=C,-D,—E}

13/32

Computing the conflict clause

1. start with the conflicting clause
2. resolve with the reason clauses until the clause contains only one literal at
the current decision level (asserting first UIP)

{-C,-D,E} {-C,—-D,—-E}

C
“ {=C,~D}

—

13/32

Computing the conflict clause

1. start with the conflicting clause
2. resolve with the reason clauses until the clause contains only one literal at
the current decision level (asserting first UIP)

y € , {-C,-D,E} {-C,—-D,—-E}
| | {_\C,“D}

13/32

Computing the conflict clause

It is always safe to add the computed conflict clause C to the formula.

Why?

14/32

Computing the conflict clause

It is always safe to add the computed conflict clause C to the formula.

Why? It was derived by resolution, so ® = C

14/32

Computing the conflict clause

def ComputeConflictClause(formula @):
res « current conflict clause
if res contains only one literal from the latest decision level:
return res

for 1 in reverse(trail):
if =1 in C:
res «+ Resolve(var(l), res, reason[l])
if res contains only one literal from the latest decision level:
return res

© N O U AW N

o

For efficient implementation see https://github.com/niklasso/minisat/
blob/master/minisat/core/Solver.cc#L296 (until line 336)

15/32

https://github.com/niklasso/minisat/blob/master/minisat/core/Solver.cc#L296
https://github.com/niklasso/minisat/blob/master/minisat/core/Solver.cc#L296

Non-Chronological Backtracking

Backjumping

DPLL

- always changes the value of the last decision variable

CDCL

1. learn the conflict clause
2. backtrack until the learnt clause becomes unit

3. unit propagate its unit literal

CDCL can and prune large parts of the search space
— non-chronological backtracking (or backjumping)

16 /32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B’ C}37
{_'C>D7E}4a {_'C>D7_‘E}57 {_‘Cv_'Dv E}6> {_'C7_‘D7_‘E}77
}

trail = [A, B, C, D, E]
decisions = [0, 1, 3]
reason[C] =1

reason[E] = 6

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B’ C}37
{_'C>D7E}4a {_'C>D7_‘E}57 {_‘Cv_'Dv E}6> {_'C7_‘D7_‘E}77
}

trail = [A, B, C, D, E]
decisions = [0, 1, 3]
reason[C] =1

reason[E] = 6

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B’ C}37
{_'C>D7E}4a {_'C>D7_‘E}57 {_‘Cv_'Dv E}6> {_'C7_‘D7_‘E}77
}

trail = [A, B, C, D, E]
decisions = [0, 1, 3]
reason[C] =1

reason[E] = 6

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B’ C}37
{_'C>D7E}4a {_'C>D7_‘E}57 {_‘Cv_'Dv E}6> {_'C7_‘D7_‘E}77
{—1C7—1D}8 }

trail = [A, B, C, —D]
decisions = [0, 1]
reason[C] =1

reason[—-D] = 8

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B7 C}37
{_'C>D7E}4a {_'C>D7_‘E}57 {_‘Cv_'Dv E}6> {_'C7_‘D7_‘E}77
{—1C7—1D}8 }

trail = [A, B, C, =D, E]
decisions = [0, 1]
reason[C] =1

reason[—-D] = 8

reason[E] = 4

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B7 C}37
{_'C>D7E}4a {_'C>D7_‘E}57 {_‘Cv_'Dv E}6> {_'C7_‘D7_‘E}77
{=C, -Dj}s, }

trail = [A, B, C, =D, E]
decisions = [0, 1]
reason[C] =1

reason[—-D] = 8

reason[E] = 4

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B7 C}37
{_'C> D7 E}47 {_'C> D7 _‘E}57 {_‘Cv _'D7 E}6> {_'C7 _‘D> _‘E}77
{_'C7 _'D}87 {_'C}9 }

trail = [A, B, C, =D, E]
decisions = [0, 1]
reason[C] =1

reason[—-D] = 8

reason[E] = 4

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B7 C}37
{_'C> D7 E}47 {_'C> D7 _‘E}57 {_‘Cv _'D7 E}6> {_'C7 _‘D> _‘E}77
{_'C7 _'D}87 {_'C}9 }

trail = [(]
decisions = []

reason[—C] = 9

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B7 C}37
{_'C> D7 E}47 {_'C> D7 _‘E}57 {_‘Cv _'D7 E}6> {_'C7 _‘D> _‘E}77
{_'C7 _'D}87 {_'C}9 }

trail = [=C, A]

decisions = [1]

reason[—C] = 9

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B7 C}37
{_'C> D7 E}47 {_'C> D7 _‘E}57 {_‘Cv _'D7 E}6> {_'C7 _‘D> _‘E}77
{_'C7 _'D}87 {_'C}9 }

trail = [-C, A, —B]

decisions = [1]

reason[—B] =1

reason[—C] =9

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B7 C}37
{_'C>D7E}4a {_'C>D7_‘E}57 {_‘Cv_'Dv E}6> {_'C7_‘D7_‘E}77
{=C,—D}s, {=C}o, {-A, C}o}

trail = [-C, A, —B]

decisions = [1]

reason[—B] =1

reason[—C] =9

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7 _|B7 C}37
{_'C>D7E}4a {_'C>D7_‘E}57 {_‘Cv_'Dv E}6> {_'C7_‘D7_‘E}77
{=C,—D}s, {=C}o, {-A, C}o}

trail = [=C, —A]

decisions =]

reason[—A] =10

reason[—C] =9

17/ 32

Complete cbcL: Example

SO - {{_|A7 _|B7 C}17 {87 _|A7 C}27 {A7_|B7 C}37
{_'C>D7E}4a {_'C>D7_‘E}57 {_‘Cv_'Dv E}6> {_'C7_'D7_‘E}77
{=C,—D}s, {=C}o, {-A, C}o}

trail = [~C, —A, =B]

— decisions = []
CA

reason[—-A] =10

o]l

reason|[—B] = 3

reason[—C] =9

17/ 32

© O N O U R W N o

def CDCL(formula @):
InitializeDatastructures()

if UnitPropagation() == CONFLICT:
return UNSAT

while not all variables are assigned:
(var, polarity) < PickUnassignedVariable()
Decide(var, polarity)

while UnitPropagation() == CONFLICT:
(learnt, backtrackLevel) <« ConflictAnalysis()
if (backtrackLevel == 0):
return UNSAT
else
Learn(learnt)
Backtrack(backtrackLevel, learnt)

return SAT

18 /32

CDCL

ConflictAnalysis()

- analyzes the current conflict
- returns the learnt clause and the highest decision level that should be
backtracked (i.e, the level whose removal makes the learnt clause unit)

Learn(clause)

- adds clause to the current formula
- initializes the watches etc.

Backtrack(backtrackLevel, clause)

- reverts all decisions up to the given level backtrackLevel (including)

- unit propagates the clause clause
19/32

Literal Decision Heuristics

Literal Decision Heuristics

Selecting good decision literals is crucial for performance (an idealistic perfect
oracle would assign a model on the first try).

Multiple cheap (aka) exist

Can be based on

- current state of the solver (and the formula)
- previous computation

Literal selection often decomposed

1. select the decision

2. select its /
20/32

DPLL decision heuristics

Dynamic Largest Individual Sum (bLis)

- choose a literal that occurs most often in unsatisfied clauses

- idea: satisfy as many remaining clauses as possible
Jeroslow-Wang

- maximize score(l) = 3 ccq ec 27

- idea: pick the literal with highest contribution to satisfying ¢
MOMS

- pick the literal that occurs most often in minimal size clauses

- idea: try to satisfy the highest number of short clauses

21/32

VSIDS

Idea

- variables that occurred in are currently important

Variable State Independent Decaying Sum (vsiDs, ZCHAFF 2001)

- maintain score for each variable
- after each conflict increase score of each variable that occurred during
conflict analysis by constant k

- after each 256 conflicts, divide all scores by 2 and

- always choose the first unassigned variable

22/32

EVSIDS

Idea

- decrease the scores of older variables more smoothly, not in chunks of 256
conflicts

Exponential vsiDs (EVSIDS, MINISAT 2003)

- keep the variable sorted all the time (binary heap)
- after

- increase score of each variable that occurred during conflict analysis by
constant 1 and
- divide scores of all other variables by a constant (e.g., 1.01)

- always choose the first unassigned variable

23/32

EVSIDS

Idea

- decrease the scores of older variables more smoothly, not in chunks of 256
conflicts

Exponential vsiDs (EVSIDS, MINISAT 2003)

- keep the variable sorted all the time (binary heap)
- after

- increase score of each variable that occurred during conflict analysis by
constant 1 and
- divide scores of all other variables by a constant (e.g., 1.01)

- always choose the first unassigned variable

- often also referred to as vsiDs ®
23/32

EVSIDS

Idea

- decrease the scores of older variables more smoothly, not in chunks of 256
conflicts

Exponential vsiDs (EVSIDS, MINISAT 2003)

- keep the variable sorted all the time (binary heap)
- after

- increase score of each variable that occurred during conflict analysis by
constant 1 and
- divide scores of all other variables by a constant (e.g., 1.01)

- always choose the first unassigned variable

- often also referred to as vsiDs ®
23/32

Implementing EVSIDS

Decreasing scores of all variables often is expensive.

- after each conflict, increase the variables that occurred during conflict
analysis by constant R

2432

Implementing EVSIDS

Decreasing scores of all variables often is expensive.

- after each conflict, increase the variables that occurred during conflict
analysis by constant R

The constant k can become too large (1.01%4°° > 254 and 1.017"333 > 1.797 . 10398)

- when k > 10" divide all scores and k by 10%°

2432

Phase selection

MINISAT

- In most of the cases assign the variable to false
- with a small probability pick a random phase

Phase saving

- choose the phase that the variable had assigned previously
- idea: the phase was likely important, focus on it unless we have a reason for

flipping it
Modern SAT solvers (CADICAL)

- cycle between multiple modes

- e.g, phase saving — set to opposite — set to zero — set to random
25/32

Restarts

If the solver gets ~stuck" in the region containing no solutions, a of the
search can help.

Restart

- clear the current assignment

- keep the learnt clauses and the variable scores and other heuristics

26 /32

Restart strategies

Usually, the solver is restarted after a certain number of conflicts.

Geometric sequence
- after1,2,4,8,16,32,... conflicts (multiplied by a constant)
Luby sequence

< 1,1,2,1,1,2,4,1,1,2,4,8,1,1,2,4,8,16, ... conflicts (multiplied by a constant)
- used in modern SAT solvers

... and many others.

27132

Restarts with phase saving

Restarts + phase saving

- the restart does not escape the current search region

- the variables are set to previous variables, but their and
are different

- explore the same region, but via a different path

28 /32

Complete cbcL-based SAT solver

Complete CDCL-based SAT solver

1 def CDCL(formula ®):

2 InitializeDatastructures()

3

4 if UnitPropagation() == CONFLICT:

5 return UNSAT

6

7 conflicts = 0;

8 while not all variables are assigned:

9 (var, polarity) < PickUnassignedVariable()
10 Decide(var, polarity)

n

12 while UnitPropagation() == CONFLICT:

13 ++conflicts;

14 if ShouldRestart(conflicts):

15 Restart()

16

17 (learnt, backtrackLevel) « ConflictAnalysis()
18 if (backjumpLevel == 0):

19 return UNSAT

20 else:

21 Learn(learnt)

22 Backtrack(backtrackLevel, learnt)
23

24 return SAT

29 /32

Effect of individual techniques

In 2011, Marques-Silva et. al evaluated effect of all mentioned features on the
solver

Tested configurations

- full MiniSAT (CDCL)

- without clause learning (=CL)

- without VSIDS (=VSIDS)

- without 2-watched literal scheme (—2WL)
- without restarts (=RST)

30/32

n
Q
>
g
[
=
(S
Q
+—
©
=
wm
2
o
=
Y
(@]
)
]
4=
(NN]

-

1Oay

00.0'00.'

*eee o

X Mok RN ooy ,N
Py . X.Xﬂ\/vo&ﬁ &J%
“~

-.'l 'f
.-

Mz

N

200 300 400 500 600 700 800 900 1000
Instances

100

31/32

Additional features of sAT solvers

- solving under assumptions
- proof generation
- unsatisfiable core generation

- interpolation

32/32

	Conflict Analysis
	Clause Learning
	Non-Chronological Backtracking
	Literal Decision Heuristics
	Restarts
	Complete cdcl-based SAT solver

