
Conflict-Driven Clause Learning
IA085: Satisfiability and Automated Reasoning

Martin Jonáš

FI MUNI, Spring 2024



Last Time

• propositional resolution
• Davis-Putnam algorithm
• Davis-Putnam-Logemann-Loveland algorithm (DPLL)
• practical implementation of DPLL

1 / 32



DPLL: Reminder

1 def DPLL(formula Φ):
2 InitializeDatastructures()
3

4 if UnitPropagation() == CONFLICT:
5 return UNSAT
6

7 while not all variables are assigned:
8 (var, polarity) ← PickUnassignedVariable()
9

10 Decide(var, polarity)
11 while UnitPropagation() == CONFLICT:
12 if decisions == []:
13 return UNSAT
14 Backtrack()
15

16 return SAT

2 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



DPLL: Not so clever

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

ABC

A

B

C

D

E

D

E

B

C

D

E

D

E

A

B

C

D

E

D

E

B

C

D

E

D

E

C

3 / 32



Conflict-Driven Clause Learning

Conflict-Driven Clause Learning (CDCL)

• goal: avoid making similar mistakes multiple times
• after each conflict, perform conflict analysis
• learn a clause that generalizes the reasons for the conflict
• backtrack non-chronologically (backjumping)

4 / 32



Conflict Analysis



Reminder: What do we store

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

A

B

C

D

E

trail = [A,B, C,D, E]
decisions = [0, 1, 3]

The decisions partition trail into decision levels
• decision literal followed by unit
propagations

• level 1: [A], level 2: [B, C], level 3: [D, E]

5 / 32



Reminder: What do we store

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

A

B

C

D

E

trail = [A,B, C,D, E]
decisions = [0, 1, 3]

The decisions partition trail into decision levels
• decision literal followed by unit
propagations

• level 1: [A], level 2: [B, C], level 3: [D, E]

5 / 32



Antecedents

antecendent (reason) clause = clause that caused the unit propagation

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

A

B

C

D

E

trail = [A,B, C,D, E]
decisions = [0, 1, 3]
reason[A] = undefined
reason[B] = undefined
reason[C] = 1
reason[D] = undefined
reason[E] = 6

6 / 32



Antecedents

antecendent (reason) clause = clause that caused the unit propagation

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

∅
A

AB

ABC

ABCD

ABCDE

A

B

C

D

E

trail = [A,B, C,D, E]
decisions = [0, 1, 3]
reason[A] = undefined
reason[B] = undefined
reason[C] = 1
reason[D] = undefined
reason[E] = 6

6 / 32



Implication graph

Representation of dependencies between currently assigned literals. Not
maintained explicitly.

Vertices

• one vertex l@d for each assigned literal
• one special conflict vertex κ
• vertices labeled by their decision levels (l@d is literal l with decision level d)

Edges

• edges are labeled by clauses
• l C−→ κ if ¬l is in the current conflicting clause C
• l

Creason[r]−−−−−→ r if r is unit propagated literal and ¬l ∈ Creason[r] and
value[¬l] = false

7 / 32



Implication graph: example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7}

trail = [A,B, C,D, E]
decisions = [0, 1, 3]
reason[A] = undefined
reason[B] = undefined
reason[C] = 1
reason[D] = undefined
reason[E] = 6

κ

E@3

D@3

C@2

B@2

A@1 C1

C1
C6

C6

C7

C7

C7

8 / 32



Clause Learning



Conflict sets

After reaching a conflict, the implication graph encodes several conflict sets = a
set of literals that causes the conflict.

Each conflict set corresponds to a conflict clause that prohibits the conflict.

Example
• Conflict set {A,¬B, C} = any assignment with µ(A) = ⊤, µ(B) = ⊥, µ(C) = ⊤
causes the conflict.

• Conflict clause {¬A,B,¬C}

9 / 32



Separating Cuts

Separating cut

• cut = partition of vertices into two disjoint sets
• separating cut = decision vertices in one set, the conflict vertex is in the other
• each separating cut corresponds to a conflict set

κ

E@3

D@3

C@2

B@2

A@1 C1

C1
C6

C6

C7

C7

C7

From left to right correspond to conflict
sets
• {A,B,D} → clause {¬A,¬B,¬D}
• {C,D} → clause {¬C,¬D}
• {C, E,D} → clause {¬C,¬E,¬D}

Which is the best one?

10 / 32



Separating Cuts

Separating cut

• cut = partition of vertices into two disjoint sets
• separating cut = decision vertices in one set, the conflict vertex is in the other
• each separating cut corresponds to a conflict set

κ

E@3

D@3

C@2

B@2

A@1 C1

C1
C6

C6

C7

C7

C7

From left to right correspond to conflict
sets
• {A,B,D} → clause {¬A,¬B,¬D}
• {C,D} → clause {¬C,¬D}
• {C, E,D} → clause {¬C,¬E,¬D}

Which is the best one?

10 / 32



Properties of learnt clauses

The learnt conflict clauses should be

• small: prune the search space as much as possible
• asserting = contain only one literal at the current decision level

11 / 32



Unique Implication Point (UIP)

• a vertex V ̸= κ such that all paths from the current decision vertex to κ go
through V

• always exists (why?)
• first UIP = closest to the conflict

κ

E@3

D@3

C@2

B@2

A@1 C1

C1
C6

C6

C7

C7

C7

Unique implication points
• D (last UIP)
• E (first UIP)

12 / 32



Computing the conflict clause

1. start with the conflicting clause
2. resolve with the reason clauses until the clause contains only one literal at
the current decision level (asserting first UIP)

κ

E@3

D@3

C@2

B@2

A@1 C1

C1
C6

C6

C7

C7

C7

{¬C,¬D,¬E}

13 / 32



Computing the conflict clause

1. start with the conflicting clause
2. resolve with the reason clauses until the clause contains only one literal at
the current decision level (asserting first UIP)

κ

E@3

D@3

C@2

B@2

A@1 C1

C1
C6

C6

C7

C7

C7

{¬C,¬D,¬E}

13 / 32



Computing the conflict clause

1. start with the conflicting clause
2. resolve with the reason clauses until the clause contains only one literal at
the current decision level (asserting first UIP)

κ

E@3

D@3

C@2

B@2

A@1 C1

C1
C6

C6

C7

C7

C7

{¬C,¬D, E} {¬C,¬D,¬E}
{¬C,¬D}

13 / 32



Computing the conflict clause

1. start with the conflicting clause
2. resolve with the reason clauses until the clause contains only one literal at
the current decision level (asserting first UIP)

κ

E@3

D@3

C@2

B@2

A@1 C1

C1
C6

C6

C7

C7

C7

{¬C,¬D, E} {¬C,¬D,¬E}
{¬C,¬D}

13 / 32



Computing the conflict clause

It is always safe to add the computed conflict clause C to the formula.

Why?

It was derived by resolution, so Φ |= C

14 / 32



Computing the conflict clause

It is always safe to add the computed conflict clause C to the formula.

Why? It was derived by resolution, so Φ |= C

14 / 32



Computing the conflict clause

1 def ComputeConflictClause(formula Φ):
2 res ← current conflict clause
3 if res contains only one literal from the latest decision level:
4 return res
5

6 for l in reverse(trail):
7 if ¬l in C:
8 res ← Resolve(var(l), res, reason[l])
9 if res contains only one literal from the latest decision level:
10 return res

For efficient implementation see https://github.com/niklasso/minisat/
blob/master/minisat/core/Solver.cc#L296 (until line 336)

15 / 32

https://github.com/niklasso/minisat/blob/master/minisat/core/Solver.cc#L296
https://github.com/niklasso/minisat/blob/master/minisat/core/Solver.cc#L296


Non-Chronological Backtracking



Backjumping

DPLL

• always changes the value of the last decision variable
• chronological backtracking

CDCL

1. learn the conflict clause
2. backtrack until the learnt clause becomes unit
3. unit propagate its asserting unit literal

CDCL can undo multiple decision levels and prune large parts of the search space
→ non-chronological backtracking (or backjumping)

16 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,

{¬C,¬D}8

, {¬C}9, {¬A, C}10

}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [A,B, C,D, E]
decisions = [0, 1, 3]
reason[C] = 1
reason[E] = 6

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8

, {¬C}9, {¬A, C}10

}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [A,B, C,D, E]
decisions = [0, 1, 3]
reason[C] = 1
reason[E] = 6

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8

, {¬C}9, {¬A, C}10

}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [A,B, C,D, E]
decisions = [0, 1, 3]
reason[C] = 1
reason[E] = 6

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8

, {¬C}9, {¬A, C}10

}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [A,B, C,¬D]
decisions = [0, 1]
reason[C] = 1

reason[¬D] = 8

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8

, {¬C}9, {¬A, C}10

}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [A,B, C,¬D, E]
decisions = [0, 1]
reason[C] = 1

reason[¬D] = 8
reason[E] = 4

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8, {¬C}9

, {¬A, C}10

}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [A,B, C,¬D, E]
decisions = [0, 1]
reason[C] = 1

reason[¬D] = 8
reason[E] = 4

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8, {¬C}9

, {¬A, C}10

}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [A,B, C,¬D, E]
decisions = [0, 1]
reason[C] = 1

reason[¬D] = 8
reason[E] = 4

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8, {¬C}9

, {¬A, C}10

}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [¬C]
decisions = []

reason[¬C] = 9

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8, {¬C}9

, {¬A, C}10

}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [¬C,A]
decisions = [1]

reason[¬C] = 9

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8, {¬C}9

, {¬A, C}10

}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [¬C,A,¬B]
decisions = [1]

reason[¬B] = 1
reason[¬C] = 9

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8, {¬C}9, {¬A, C}10}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [¬C,A,¬B]
decisions = [1]

reason[¬B] = 1
reason[¬C] = 9

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8, {¬C}9, {¬A, C}10}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [¬C,¬A]
decisions = []

reason[¬A] = 10
reason[¬C] = 9

17 / 32



Complete CDCL: Example

φ = {{¬A,¬B, C}1, {B,¬A, C}2, {A,¬B, C}3,
{¬C,D, E}4, {¬C,D,¬E}5, {¬C,¬D, E}6, {¬C,¬D,¬E}7,
{¬C,¬D}8, {¬C}9, {¬A, C}10}

∅
A

AB

ABC

ABCD

ABCDE

ABCD

ABCDE

C

CA

CAB

CA

CAB

A

B

C

D

E

¬D

E

C

A

B

A

B

trail = [¬C,¬A,¬B]
decisions = []

reason[¬A] = 10
reason[¬B] = 3
reason[¬C] = 9

17 / 32



CDCL

1 def CDCL(formula Φ):
2 InitializeDatastructures()
3

4 if UnitPropagation() == CONFLICT:
5 return UNSAT
6

7 while not all variables are assigned:
8 (var, polarity) ← PickUnassignedVariable()
9 Decide(var, polarity)
10

11 while UnitPropagation() == CONFLICT:
12 (learnt, backtrackLevel) ← ConflictAnalysis()
13 if (backtrackLevel == 0):
14 return UNSAT
15 else
16 Learn(learnt)
17 Backtrack(backtrackLevel, learnt)
18

19 return SAT
18 / 32



CDCL

ConflictAnalysis()

• analyzes the current conflict
• returns the learnt clause and the highest decision level that should be
backtracked (i.e., the level whose removal makes the learnt clause unit)

Learn(clause)

• adds clause to the current formula
• initializes the watches etc.

Backtrack(backtrackLevel, clause)

• reverts all decisions up to the given level backtrackLevel (including)
• unit propagates the clause clause

19 / 32



Literal Decision Heuristics



Literal Decision Heuristics

Selecting good decision literals is crucial for performance (an idealistic perfect
oracle would assign a model on the first try).

Multiple cheap literal selection heuristics (aka branching heuristics) exist

Can be based on

• current state of the solver (and the formula)
• previous computation

Literal selection often decomposed

1. select the decision variable
2. select its phase/polarity

20 / 32



DPLL decision heuristics

Dynamic Largest Individual Sum (DLIS)

• choose a literal that occurs most often in unsatisfied clauses
• idea: satisfy as many remaining clauses as possible

Jeroslow-Wang

• maximize score(l) =
∑

C∈Φ,l∈C 2−|C|

• idea: pick the literal with highest contribution to satisfying φ

MOMS

• pick the literal that occurs most often in minimal size clauses
• idea: try to satisfy the highest number of short clauses

21 / 32



VSIDS

Idea

• variables that occurred in recent conflicts are currently important

Variable State Independent Decaying Sum (VSIDS, ZCHAFF 2001)

• maintain score for each variable
• after each conflict increase score of each variable that occurred during
conflict analysis by constant k

• after each 256 conflicts, divide all scores by 2 and sort the variables by score
• always choose the first unassigned variable

22 / 32



EVSIDS

Idea

• decrease the scores of older variables more smoothly, not in chunks of 256
conflicts

Exponential VSIDS (EVSIDS, MINISAT 2003)

• keep the variable sorted all the time (binary heap)
• after each conflict

– increase score of each variable that occurred during conflict analysis by
constant 1 and

– divide scores of all other variables by a constant (e.g., 1.01)

• always choose the first unassigned variable

• often also referred to as VSIDS

,

23 / 32



EVSIDS

Idea

• decrease the scores of older variables more smoothly, not in chunks of 256
conflicts

Exponential VSIDS (EVSIDS, MINISAT 2003)

• keep the variable sorted all the time (binary heap)
• after each conflict

– increase score of each variable that occurred during conflict analysis by
constant 1 and

– divide scores of all other variables by a constant (e.g., 1.01)

• always choose the first unassigned variable
• often also referred to as VSIDS

,

23 / 32



EVSIDS

Idea

• decrease the scores of older variables more smoothly, not in chunks of 256
conflicts

Exponential VSIDS (EVSIDS, MINISAT 2003)

• keep the variable sorted all the time (binary heap)
• after each conflict

– increase score of each variable that occurred during conflict analysis by
constant 1 and

– divide scores of all other variables by a constant (e.g., 1.01)

• always choose the first unassigned variable
• often also referred to as VSIDS

,

23 / 32



Implementing EVSIDS

Decreasing scores of all variables often is expensive. Increase the constant that is
added to the score instead.

• after each conflict, increase the variables that occurred during conflict
analysis by constant k and set k to 1.01 · k

The constant k can become too large (1.014459 > 264 and 1.0171333 > 1.797 · 10308)

• when k > 10100 divide all scores and k by 10100

24 / 32



Implementing EVSIDS

Decreasing scores of all variables often is expensive. Increase the constant that is
added to the score instead.

• after each conflict, increase the variables that occurred during conflict
analysis by constant k and set k to 1.01 · k

The constant k can become too large (1.014459 > 264 and 1.0171333 > 1.797 · 10308)

• when k > 10100 divide all scores and k by 10100

24 / 32



Phase selection

MINISAT

• in most of the cases assign the variable to false
• with a small probability pick a random phase

Phase saving

• choose the phase that the variable had assigned previously
• idea: the phase was likely important, focus on it unless we have a reason for
flipping it

Modern SAT solvers (CADICAL)

• cycle between multiple modes
• e.g., phase saving→ set to opposite→ set to zero→ set to random

25 / 32



Restarts



Restarts

If the solver gets ``stuck'' in the region containing no solutions, a restart of the
search can help.

Restart

• clear the current assignment
• keep the learnt clauses and the variable scores and other heuristics

26 / 32



Restart strategies

Usually, the solver is restarted after a certain number of conflicts.

Geometric sequence

• after 1, 2, 4, 8, 16, 32, . . . conflicts (multiplied by a constant)

Luby sequence

• 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1, 1, 2, 4, 8, 16, . . . conflicts (multiplied by a constant)
• used in modern SAT solvers

. . . and many others.

27 / 32



Restarts with phase saving

Restarts + phase saving

• the restart does not escape the current search region
• the variables are set to previous variables, but their order and dependencies
are different

• explore the same region, but via a different path

28 / 32



Complete CDCL-based SAT solver



Complete CDCL-based SAT solver

1 def CDCL(formula Φ):
2 InitializeDatastructures()
3
4 if UnitPropagation() == CONFLICT:
5 return UNSAT
6
7 conflicts = 0;
8 while not all variables are assigned:
9 (var, polarity) ← PickUnassignedVariable()
10 Decide(var, polarity)
11
12 while UnitPropagation() == CONFLICT:
13 ++conflicts;
14 if ShouldRestart(conflicts):
15 Restart()
16
17 (learnt, backtrackLevel) ← ConflictAnalysis()
18 if (backjumpLevel == 0):
19 return UNSAT
20 else:
21 Learn(learnt)
22 Backtrack(backtrackLevel, learnt)
23
24 return SAT

29 / 32



Effect of individual techniques

In 2011, Marques-Silva et. al evaluated effect of all mentioned features on the
solver MiniSAT.

Tested configurations

• full MiniSAT (CDCL)
• without clause learning (¬CL)
• without VSIDS (¬VSIDS)
• without 2-watched literal scheme (¬2WL)
• without restarts (¬RST)

30 / 32



Effect of individual techniques

31 / 32



Next time

Additional features of SAT solvers

• solving under assumptions
• proof generation
• unsatisfiable core generation
• interpolation

32 / 32


	Conflict Analysis
	Clause Learning
	Non-Chronological Backtracking
	Literal Decision Heuristics
	Restarts
	Complete cdcl-based SAT solver

