
Advanced Features of SAT Solvers
IA085: Satisfiability and Automated Reasoning

Martin Jonáš

FI MUNI, Spring 2024

Last Time

• Conflict-Driven Clause Learning (CDCL): DPLL + clause learning + backjumping
• literal decision heuristics
• restarts

1 / 38

Incremental SAT solving

Normal Usage

1. Call solve(Φ).
2. Get the answer (+ possibly a model).
3. ???
4. Profit.

2 / 38

Incremental Usage

Some applications issue incremental queries:

1. Is Φ1 satisfiable?
2. Is Φ1 ∪ Φ2 satisfiable?
3. Is Φ1 ∪ Φ2 ∪ Φ3 satisfiable?
4. . . .

Examples

• symbolic execution
• planning

3 / 38

Incremental Usage

Modern solvers support incremental interface:

1. Add clauses Φ1.
2. Call solve().
3. Do something with the answer.
4. Add clauses Φ2.
5. Call solve().
6. Do something with the answer.
7. Add clauses Φ3.
8. . . .

Why is this better than calling solve for Φ1, for Φ1 ∪ Φ2, for Φ1 ∪ Φ2 ∪ Φ3, . . .?
4 / 38

Solving Under Assumptions

What if we need to solve multiple queries that are not incremental, but differ in
some literals?

• Is Φ ∧ A satisfiable?
• Is Φ ∧ ¬A ∧ B satisfiable?
• Is Φ ∧ ¬B ∧ D ∧ E satisfiable?
• . . .

Examples

• planning (common constraints + individual goals)
• package dependencies (common constraints + individual queries for
installed packages)

5 / 38

Solving Under Assumptions

Solving under assumptions (MiniSAT)

• Add clauses Φ.
• Call solve([A]) and do something with the result.
• Call solve([¬A, B]) and do something with the result.
• Call solve([¬B, D, E]) and do something with the result.
• . . .

The calls to solve() reuse the learnt clauses!

6 / 38

Solving Under Assumptions (alternative API)

Solving under assumptions (CaDiCaL)

• Add clauses Φ.
• Call assume(A).
• Call solve() and do something with the result.
• Call assume(¬A) and assume(B).
• Call solve() and do something with the result.
• Call assume(¬B) and assume(D) and assume(E).
• Call solve() and do something with the result.
• . . .

7 / 38

Solving Under Assumptions: Implementation

solve([l1, l2, ..., lk])

• before the search, decide l1, l2, . . ., lk on dummy decision levels before
decisions level 0

• when backjumping before the real decision level 0, return UNSAT

Nice bonus

• when UNSAT, a slight modification of clause learning (last UIP) can compute a
conflict clause C = ¬µ with µ ⊆ {l1, l2, . . . , lk}

• identifies failed assumptions that contributed to the unsatisfiability

8 / 38

Varying Clauses

What if we need to vary additional clauses, not only literals?

• Is Φ ∧ C1 satisfiable?
• Is Φ ∧ C2 ∧ C3 satisfiable?
• Is Φ ∧ C4 satisfiable?
• . . .

9 / 38

Activation Literals

Solution

• add a new activation literal to each clause that should be possible to disable

Φ ∧ C2 ∧ C3 ; Φ ∧ (¬A2 ∨ C2) ∧ (¬A3 ∨ C3)

• use solving under assumptions to enable clauses
– solve([¬A2,¬A3]) ≡ is Φ sat?
– solve([A2,¬A3]) ≡ is Φ ∧ C2 sat?
– solve([¬A2, A3]) ≡ is Φ ∧ C3 sat?
– solve([A2, A3]) ≡ is Φ ∧ C2 ∧ C3 sat?

10 / 38

Proof generation

Proof Generation

Facts

• SAT solvers are used in safety-critical systems
• SAT solvers are pieces of software
• all software has bugs

• /
Solution

• besides SAT/UNSAT answer, produce an artifact that can be independently
checked

• for SAT results = model
• for UNSAT results = unsatisfiability proof

11 / 38

Proof Generation

Facts

• SAT solvers are used in safety-critical systems
• SAT solvers are pieces of software
• all software has bugs
• /

Solution

• besides SAT/UNSAT answer, produce an artifact that can be independently
checked

• for SAT results = model
• for UNSAT results = unsatisfiability proof

11 / 38

Proof Generation

Facts

• SAT solvers are used in safety-critical systems
• SAT solvers are pieces of software
• all software has bugs
• /

Solution

• besides SAT/UNSAT answer, produce an artifact that can be independently
checked

• for SAT results = model
• for UNSAT results = unsatisfiability proof

11 / 38

Resolution Proof Generation from DPLL

Recall
Each UNSAT run of DPLL corresponds to a tree resolution proof of unsatisfiability

Algorithm

• conflicting clauses (leaves); input clauses
• unit propagation steps; resolution with the clause that triggered the unit
propagation

• decision nodes; resolution steps on the decided variable

12 / 38

Resolution Proof Generation from DPLL: Example

{{A,B}1, {¬B, C}2, {¬B,¬C}3, {¬A,¬B,¬D}4, {¬A,B,¬D}5, {¬A,B,D}6}

[]

[A] [¬A]

[A,B] [A,¬B] [¬A,B]

[A,B, C] [A,¬B,¬D] [¬A,B, C]

A

B

C

¬B

¬D

¬A

B

C

∅

{A} {A}

{¬B} {¬A,B} {¬B}{A,B}

{¬B,¬C}{¬B, C} {¬A,B,D}{¬A,B,¬D} {¬B,¬C}{¬B, C}

A

B

C

¬B

¬D

¬A

B

C

13 / 38

Resolution Proof Generation from DPLL: Example

{{A,B}1, {¬B, C}2, {¬B,¬C}3, {¬A,¬B,¬D}4, {¬A,B,¬D}5, {¬A,B,D}6}

[]

[A] [¬A]

[A,B] [A,¬B] [¬A,B]

[A,B, C] [A,¬B,¬D] [¬A,B, C]

A

B

C

¬B

¬D

¬A

B

C

∅

{A} {A}

{¬B} {¬A,B} {¬B}{A,B}

{¬B,¬C}{¬B, C} {¬A,B,D}{¬A,B,¬D} {¬B,¬C}{¬B, C}

A

B

C

¬B

¬D

¬A

B

C

13 / 38

Resolution Proof Generation from CDCL

CDCL observations

• the final conflict was achieved by backtracked literals and unit propagated
literals (no decisions, why?)

• the final conflict is derived by unit propagation from input clauses and learnt
clauses

• the final conflict can be obtained by resolving input clauses and learnt
clauses

• each learnt clause was obtained by resolving input clauses and previous
learnt clauses

14 / 38

Resolution Proof Generation from CDCL

Algorithm

1. express the final conflict as resolution of input clauses and learnt clauses
2. while the proof contains a leaf that is a learnt clause, replace it by its
resolution proof

Practical considerations

• the solver needs to remember for each learnt clause its antecedent clauses
from which it was obtained

• might require significant amount of memory and makes the solver more
complex

15 / 38

Clausal Proofs

For easier implementation: clausal proofs

• proof is a list of clauses
• each clause has to be entailed by some previous clauses (input or derived)
• SAT solver only outputs the learnt clauses during the search
• proof checker checks the entailment
• examples: DRUP, DRAT

16 / 38

Clausal Proof Formats

{{A,B}1, {¬B, C}2, {¬B,¬C}3, {¬A,¬B,¬D}4, {¬A,B,¬D}5, {¬A,B,D}6}

DIMACS formula

p cnf 4 6
1 2 0

-2 3 0
-2 -3 0
-1 -2 -4 0
-1 2 -4 0
-1 2 4 0

Clausal proof

-2 0
1 0
-1 2 0
-1 0
0

17 / 38

Reverse Unit Propagation (RUP)

Φ |= (l1 ∨ l2 ∨ . . . ∨ ln) ⇐⇒ Φ ∧ ¬l1 ∧ ¬l2 ∧ . . . ∧ ¬ln |= ⊥

To check clause C = {l1, l2, . . . , ln} using reverse unit propagation (RUP)

1. assign ¬l1,¬l2, . . . ,¬ln
2. check that unit propagation produces a conflict

Reverse Unit Propagation

• obviously not complete
• sufficient for clauses learnt by CDCL, because it learns clauses that were
conflicting by unit propagation

• previous example was RUP proof
18 / 38

Delete Reverse Unit Propagation (DRUP)

• proof checking of RUP requires checking large number of clauses
• some were actually deleted by the solver and are not needed for the proof
anymore→ express deleting (D) in the proof (DRUP)

DIMACS formula

p cnf 4 6
1 2 0

-2 3 0
-2 -3 0
-1 -2 -4 0
-1 2 -4 0
-1 2 4 0

Clausal proof

-2 0
d -2 3 0
d -2 -3 0

1 0
-1 2 0
-1 0
0

19 / 38

Clausal Proof Formats

Multiple clausal proof formats exist besides DRUP

• DRAT
• LRAT
• LPR
• . . .

Most of them have efficient proof checkers (some even formally verified).

Challenge

• implement (D)RUP proof generation in your solver
• use e.g. DRAT-TRIM for proof checking
(https://www.cs.utexas.edu/~marijn/drat-trim/)

20 / 38

https://www.cs.utexas.edu/~marijn/drat-trim/

Clausal Proof Formats

Multiple clausal proof formats exist besides DRUP

• DRAT
• LRAT
• LPR
• . . .

Most of them have efficient proof checkers (some even formally verified).

Challenge

• implement (D)RUP proof generation in your solver
• use e.g. DRAT-TRIM for proof checking
(https://www.cs.utexas.edu/~marijn/drat-trim/)

20 / 38

https://www.cs.utexas.edu/~marijn/drat-trim/

Unsatisfiable Cores

Unsatisfiable Cores

Definition
For an unsatisfiable formula Φ in CNF, its subset of clauses Ψ ⊆ Φ is called
unsatisfiable core if Ψ is unsatisfiable.

Important
The set Ψ does not have to be minimal.

Applications

• analysis of requirements
• package dependencies
• abstraction refinement

21 / 38

Unsatisfiable Cores: Proof-based Algorithm

Proof-based algorithm

1. Compute a resolution proof of unsatisfiability of Φ.
2. Return the set Ψ ⊆ Φ of clauses that occur as leaves in the proof.

22 / 38

Unsatisfiable Cores: Proof-based Algorithm

{{A,B}, {D,¬E}, {¬B, C}, {¬B,¬C}, {B,¬E, F}, {¬A,¬B,¬D},
{¬A,¬F}, {¬A,B,¬D}, {¬E,¬F}, {¬A,B,D}}

{¬B, C} {¬B,¬C}

{¬B}

{A,B} {¬A,B,¬D} {¬A,B,D}

{¬A,B}

{A} {¬A}

∅

23 / 38

Unsatisfiable Cores: Proof-based Algorithm

{{A,B}, {D,¬E}, {¬B, C}, {¬B,¬C}, {B,¬E, F}, {¬A,¬B,¬D},
{¬A,¬F}, {¬A,B,¬D}, {¬E,¬F}, {¬A,B,D}}

{¬B, C} {¬B,¬C}

{¬B}

{A,B} {¬A,B,¬D} {¬A,B,D}

{¬A,B}

{A} {¬A}

∅

23 / 38

Unsatisfiable Cores: Proof-based Algorithm

{{A,B}, {D,¬E}, {¬B, C}, {¬B,¬C}, {B,¬E, F}, {¬A,¬B,¬D},
{¬A,¬F}, {¬A,B,¬D}, {¬E,¬F}, {¬A,B,D}}

{¬B, C} {¬B,¬C}

{¬B}

{A,B} {¬A,B,¬D} {¬A,B,D}

{¬A,B}

{A} {¬A}

∅

23 / 38

Unsatisfiable Cores: Assumption-based Algorithm

Assumption-based algorithm

1. Add a new activation literal ¬Ai to each clause Ci of Φ.
2. Solve under assumptions solve([A1,A2, . . . , A|Φ|]).
3. The result will be UNSAT.
4. The set F ⊆ {A1,A2, . . . , A|Φ|} of failed assumption literals corresponds to an
unsatisfiable core of Φ.

24 / 38

Unsatisfiable Cores: Assumption-based Algorithm

{{A,B},
{D,¬E},
{¬B, C},
{¬B,¬C},
{B,¬E, F},
{¬A,¬B,¬D},
{¬A,¬F},
{¬A,B,¬D},
{¬E,¬F},
{¬A,B,D}}

{{¬A1,A,B},
{¬A2,D,¬E},
{¬A3,¬B, C},
{¬A4,¬B,¬C},
{¬A5,B,¬E, F},
{¬A6,¬A,¬B,¬D},
{¬A7,¬A,¬F},
{¬A8,¬A,B,¬D},
{¬A9,¬E,¬F},
{¬A10,¬A,B,D}}

solve([A1,A2, . . . , A10]) =

UNSAT
failed literals {A1,A3,A4,A8,A10}

25 / 38

Unsatisfiable Cores: Assumption-based Algorithm

{{A,B},
{D,¬E},
{¬B, C},
{¬B,¬C},
{B,¬E, F},
{¬A,¬B,¬D},
{¬A,¬F},
{¬A,B,¬D},
{¬E,¬F},
{¬A,B,D}}

{{¬A1,A,B},
{¬A2,D,¬E},
{¬A3,¬B, C},
{¬A4,¬B,¬C},
{¬A5,B,¬E, F},
{¬A6,¬A,¬B,¬D},
{¬A7,¬A,¬F},
{¬A8,¬A,B,¬D},
{¬A9,¬E,¬F},
{¬A10,¬A,B,D}}

solve([A1,A2, . . . , A10]) =

UNSAT
failed literals {A1,A3,A4,A8,A10}

25 / 38

Unsatisfiable Cores: Assumption-based Algorithm

{{A,B},
{D,¬E},
{¬B, C},
{¬B,¬C},
{B,¬E, F},
{¬A,¬B,¬D},
{¬A,¬F},
{¬A,B,¬D},
{¬E,¬F},
{¬A,B,D}}

{{¬A1,A,B},
{¬A2,D,¬E},
{¬A3,¬B, C},
{¬A4,¬B,¬C},
{¬A5,B,¬E, F},
{¬A6,¬A,¬B,¬D},
{¬A7,¬A,¬F},
{¬A8,¬A,B,¬D},
{¬A9,¬E,¬F},
{¬A10,¬A,B,D}}

solve([A1,A2, . . . , A10]) =

UNSAT
failed literals {A1,A3,A4,A8,A10}

25 / 38

Unsatisfiable Cores: Assumption-based Algorithm

{{A,B},
{D,¬E},
{¬B, C},
{¬B,¬C},
{B,¬E, F},
{¬A,¬B,¬D},
{¬A,¬F},
{¬A,B,¬D},
{¬E,¬F},
{¬A,B,D}}

{{¬A1,A,B},
{¬A2,D,¬E},
{¬A3,¬B, C},
{¬A4,¬B,¬C},
{¬A5,B,¬E, F},
{¬A6,¬A,¬B,¬D},
{¬A7,¬A,¬F},
{¬A8,¬A,B,¬D},
{¬A9,¬E,¬F},
{¬A10,¬A,B,D}}

solve([A1,A2, . . . , A10]) = UNSAT

failed literals {A1,A3,A4,A8,A10}

25 / 38

Unsatisfiable Cores: Assumption-based Algorithm

{{A,B},
{D,¬E},
{¬B, C},
{¬B,¬C},
{B,¬E, F},
{¬A,¬B,¬D},
{¬A,¬F},
{¬A,B,¬D},
{¬E,¬F},
{¬A,B,D}}

{{¬A1,A,B},
{¬A2,D,¬E},
{¬A3,¬B, C},
{¬A4,¬B,¬C},
{¬A5,B,¬E, F},
{¬A6,¬A,¬B,¬D},
{¬A7,¬A,¬F},
{¬A8,¬A,B,¬D},
{¬A9,¬E,¬F},
{¬A10,¬A,B,D}}

solve([A1,A2, . . . , A10]) = UNSAT
failed literals {A1,A3,A4,A8,A10}

25 / 38

Unsatisfiable Cores: Assumption-based Algorithm

{{A,B},
{D,¬E},
{¬B, C},
{¬B,¬C},
{B,¬E, F},
{¬A,¬B,¬D},
{¬A,¬F},
{¬A,B,¬D},
{¬E,¬F},
{¬A,B,D}}

{{¬A1,A,B},
{¬A2,D,¬E},
{¬A3,¬B, C},
{¬A4,¬B,¬C},
{¬A5,B,¬E, F},
{¬A6,¬A,¬B,¬D},
{¬A7,¬A,¬F},
{¬A8,¬A,B,¬D},
{¬A9,¬E,¬F},
{¬A10,¬A,B,D}}

solve([A1,A2, . . . , A10]) = UNSAT
failed literals {A1,A3,A4,A8,A10}

25 / 38

Interpolation

Craig Interpolants

Definition (Craig Interpolant, 1957)
Given a pair of formulas (A,B) such that A ∧ B |= ⊥, a Craig interpolant is a
formula I such that

• A |= I
• B ∧ I |= ⊥
• Atoms(I) ⊆ Atoms(A) ∩ Atoms(B)

This is the definition used in formal methods, sometimes called reverse Craig
interpolant.

26 / 38

Craig Interpolants: Examples

A = A1 ∧ (¬A1 ∨ C1) ∧ A2 ∧ (¬A2 ∨ C2) ∧ C3
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ C3

I = C1 ∧ C2

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3
I = (C1 ∨ C3) ∧ (C2 ∨ C3)

27 / 38

Craig Interpolants: Examples

A = A1 ∧ (¬A1 ∨ C1) ∧ A2 ∧ (¬A2 ∨ C2) ∧ C3
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ C3
I = C1 ∧ C2

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3
I = (C1 ∨ C3) ∧ (C2 ∨ C3)

27 / 38

Craig Interpolants: Examples

A = A1 ∧ (¬A1 ∨ C1) ∧ A2 ∧ (¬A2 ∨ C2) ∧ C3
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ C3
I = C1 ∧ C2

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

I = (C1 ∨ C3) ∧ (C2 ∨ C3)

27 / 38

Craig Interpolants: Examples

A = A1 ∧ (¬A1 ∨ C1) ∧ A2 ∧ (¬A2 ∨ C2) ∧ C3
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ C3
I = C1 ∧ C2

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3
I = (C1 ∨ C3) ∧ (C2 ∨ C3)

27 / 38

Craig Interpolants (alternative definition)

Definition (Craig Interpolant: alternative)
Given a pair of formulas (A,B) such that A |= B, a Craig interpolant is a formula I
such that

• A |= I
• I |= B
• Atoms(I) ⊆ Atoms(A) ∩ Atoms(B)

The definitions are dual: (A,B) is a reverse Craig interpolant iff (A,¬B) is a Craig
interpolant in the above sense.

We discuss only reverse Craig interpolants from now on.

28 / 38

Craig Interpolation: Usage

Interpolants widely used in formal verification

• overapproximation of image
• computation of function summaries
• generalization of spurious counterexamples
• refinement of predicate abstraction
• . . .

29 / 38

Craig Interpolation: Existence and Size

Theorem (McMillan, 2003)
For every pair of propositional formulas (A,B) such that A ∧ B |= ⊥, a Craig
interpolant can be computed in linear time with respect to the size of a resolution
proof of unsatisfiability of A ∧ B.

What does it say about the size of interpolant?

What does it say about size with respect to |A|+ |B|?

30 / 38

Craig Interpolation: Existence and Size

Theorem (McMillan, 2003)
For every pair of propositional formulas (A,B) such that A ∧ B |= ⊥, a Craig
interpolant can be computed in linear time with respect to the size of a resolution
proof of unsatisfiability of A ∧ B.

What does it say about the size of interpolant?

What does it say about size with respect to |A|+ |B|?

30 / 38

Craig Interpolation: Existence and Size

Theorem (McMillan, 2003)
For every pair of propositional formulas (A,B) such that A ∧ B |= ⊥, a Craig
interpolant can be computed in linear time with respect to the size of a resolution
proof of unsatisfiability of A ∧ B.

What does it say about the size of interpolant?

What does it say about size with respect to |A|+ |B|?

30 / 38

Craig Interpolation: Algorithm

Computing Craig Interpolants

1. Get resolution proof of unsatisfiability of A ∧ B.
2. Label nodes of the proof by preliminary interpolants, starting from leaves.
3. The label of root of the proof is the Craig interpolant of (A,B).

31 / 38

Preliminary Interpolants

Definition
A formula f is a preliminary interpolant of the resolution proof node C (written
c [f]) if

1. A |= f
2. B ∧ f |= C
3. Atoms(C) ⊆ Atoms(A) ∪ Atoms(B)
4. Atoms(f) ⊆ Atoms(A) ∩ (Atoms(B) ∪ Atoms(C))

Preliminary interpolant f of the root C = ⊥ is the real Craig interpolant of (A,B).

32 / 38

Interpolation Algorithm

Leaves

C [C] C ∈ A C [⊤] C ∈ B

Inner nodes

(l ∨ C) [f] (¬l ∨ D) [g]
(C ∨ D) [

f ∧ g

]
var(l) ∈ Atoms(B)

(l ∨ C) [f] (¬l ∨ D) [g]
(C ∨ D) [

f
∣∣
¬l ∨ g

∣∣
l

]
var(l) ̸∈ Atoms(B)

where φ
∣∣
l replaces all l in φ by ⊤ and ¬l by ⊥

33 / 38

Interpolation Algorithm

Leaves

C [C] C ∈ A C [⊤] C ∈ B

Inner nodes

(l ∨ C) [f] (¬l ∨ D) [g]
(C ∨ D) [

f ∧ g

]
var(l) ∈ Atoms(B)

(l ∨ C) [f] (¬l ∨ D) [g]
(C ∨ D) [

f
∣∣
¬l ∨ g

∣∣
l

]
var(l) ̸∈ Atoms(B)

where φ
∣∣
l replaces all l in φ by ⊤ and ¬l by ⊥

33 / 38

Interpolation Algorithm

Leaves

C [C] C ∈ A C [⊤] C ∈ B

Inner nodes

(l ∨ C) [f] (¬l ∨ D) [g]
(C ∨ D) [f ∧ g] var(l) ∈ Atoms(B)

(l ∨ C) [f] (¬l ∨ D) [g]
(C ∨ D) [

f
∣∣
¬l ∨ g

∣∣
l

]
var(l) ̸∈ Atoms(B)

where φ
∣∣
l replaces all l in φ by ⊤ and ¬l by ⊥

33 / 38

Interpolation Algorithm

Leaves

C [C] C ∈ A C [⊤] C ∈ B

Inner nodes

(l ∨ C) [f] (¬l ∨ D) [g]
(C ∨ D) [f ∧ g] var(l) ∈ Atoms(B)

(l ∨ C) [f] (¬l ∨ D) [g]
(C ∨ D) [f

∣∣
¬l ∨ g

∣∣
l]

var(l) ̸∈ Atoms(B)

where φ
∣∣
l replaces all l in φ by ⊤ and ¬l by ⊥

33 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1

[A1]

¬A1 ∨ C1 ∨ C3

[¬A1 ∨ C1 ∨ C3]

A2

[A2]

¬A2 ∨ C2 ∨ C3

[¬A2 ∨ C2 ∨ C3]

C1 ∨ C3

[C1 ∨ C3]

C2 ∨ C3

[C2 ∨ C3]

¬C3

[⊤]

¬C3

[⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1

[⊤]

¬C2 ∨ ¬B1

[⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1

[A1]

¬A1 ∨ C1 ∨ C3

[¬A1 ∨ C1 ∨ C3]

A2

[A2]

¬A2 ∨ C2 ∨ C3

[¬A2 ∨ C2 ∨ C3]

C1 ∨ C3

[C1 ∨ C3]

C2 ∨ C3

[C2 ∨ C3]

¬C3

[⊤]

¬C3

[⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1

[⊤]

¬C2 ∨ ¬B1

[⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3

[¬A1 ∨ C1 ∨ C3]

A2

[A2]

¬A2 ∨ C2 ∨ C3

[¬A2 ∨ C2 ∨ C3]

C1 ∨ C3

[C1 ∨ C3]

C2 ∨ C3

[C2 ∨ C3]

¬C3

[⊤]

¬C3

[⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1

[⊤]

¬C2 ∨ ¬B1

[⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2

[A2]

¬A2 ∨ C2 ∨ C3

[¬A2 ∨ C2 ∨ C3]

C1 ∨ C3

[C1 ∨ C3]

C2 ∨ C3

[C2 ∨ C3]

¬C3

[⊤]

¬C3

[⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1

[⊤]

¬C2 ∨ ¬B1

[⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3

[¬A2 ∨ C2 ∨ C3]

C1 ∨ C3

[C1 ∨ C3]

C2 ∨ C3

[C2 ∨ C3]

¬C3

[⊤]

¬C3

[⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1

[⊤]

¬C2 ∨ ¬B1

[⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3

[C1 ∨ C3]

C2 ∨ C3

[C2 ∨ C3]

¬C3

[⊤]

¬C3

[⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1

[⊤]

¬C2 ∨ ¬B1

[⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3

[C1 ∨ C3]

C2 ∨ C3

[C2 ∨ C3]

¬C3 [⊤] ¬C3

[⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1

[⊤]

¬C2 ∨ ¬B1

[⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3

[C1 ∨ C3]

C2 ∨ C3

[C2 ∨ C3]

¬C3 [⊤] ¬C3 [⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1

[⊤]

¬C2 ∨ ¬B1

[⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3

[C1 ∨ C3]

C2 ∨ C3

[C2 ∨ C3]

¬C3 [⊤] ¬C3 [⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1 [⊤] ¬C2 ∨ ¬B1

[⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3

[C1 ∨ C3]

C2 ∨ C3

[C2 ∨ C3]

¬C3 [⊤] ¬C3 [⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1 [⊤] ¬C2 ∨ ¬B1 [⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3 [C1 ∨ C3] C2 ∨ C3

[C2 ∨ C3]

¬C3 [⊤] ¬C3 [⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1 [⊤] ¬C2 ∨ ¬B1 [⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3 [C1 ∨ C3] C2 ∨ C3 [C2 ∨ C3]¬C3 [⊤] ¬C3 [⊤]

C1

[C1 ∨ C3]

C2

[C2 ∨ C3]

¬C1 ∨ B1 [⊤] ¬C2 ∨ ¬B1 [⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3 [C1 ∨ C3] C2 ∨ C3 [C2 ∨ C3]¬C3 [⊤] ¬C3 [⊤]

C1 [C1 ∨ C3] C2

[C2 ∨ C3]

¬C1 ∨ B1 [⊤] ¬C2 ∨ ¬B1 [⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3 [C1 ∨ C3] C2 ∨ C3 [C2 ∨ C3]¬C3 [⊤] ¬C3 [⊤]

C1 [C1 ∨ C3] C2 [C2 ∨ C3]¬C1 ∨ B1 [⊤] ¬C2 ∨ ¬B1 [⊤]

B1

[C1 ∨ C3]

¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3 [C1 ∨ C3] C2 ∨ C3 [C2 ∨ C3]¬C3 [⊤] ¬C3 [⊤]

C1 [C1 ∨ C3] C2 [C2 ∨ C3]¬C1 ∨ B1 [⊤] ¬C2 ∨ ¬B1 [⊤]

B1 [C1 ∨ C3] ¬B1

[C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3 [C1 ∨ C3] C2 ∨ C3 [C2 ∨ C3]¬C3 [⊤] ¬C3 [⊤]

C1 [C1 ∨ C3] C2 [C2 ∨ C3]¬C1 ∨ B1 [⊤] ¬C2 ∨ ¬B1 [⊤]

B1 [C1 ∨ C3] ¬B1 [C2 ∨ C3]

⊥

[(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Example

A = A1 ∧ (¬A1 ∨ C1 ∨ C3) ∧ A2 ∧ (¬A2 ∨ C2 ∨ C3)
B = (¬C1 ∨ B1) ∧ (¬C2 ∨ ¬B1) ∧ ¬C3

A1 [A1] ¬A1 ∨ C1 ∨ C3 [¬A1 ∨ C1 ∨ C3] A2 [A2] ¬A2 ∨ C2 ∨ C3 [¬A2 ∨ C2 ∨ C3]

C1 ∨ C3 [C1 ∨ C3] C2 ∨ C3 [C2 ∨ C3]¬C3 [⊤] ¬C3 [⊤]

C1 [C1 ∨ C3] C2 [C2 ∨ C3]¬C1 ∨ B1 [⊤] ¬C2 ∨ ¬B1 [⊤]

B1 [C1 ∨ C3] ¬B1 [C2 ∨ C3]

⊥ [(C1 ∨ C3) ∧ (C2 ∨ C3)]

34 / 38

Interpolation Algorithm: Correctness

We can prove that

1. if
C [f] ,

then f is a preliminary interpolant of C
2. if

C [f] D [g]
E [h]

and f is a preliminary interpolant of C
and g is preliminary interpolant of D,
then h is preliminary interpolant of E

35 / 38

Where are we?

Contents

Propositional satisfiability (SAT)

• (A ∨ ¬B) ∧ (¬A ∨ C)
• is it satisfiable?

• ← YOU ARE STANDING HERE

Satisfiability modulo theories (SMT)

• x = 1 ∧ x = y+ y ∧ y > 0
• is it satisfiable over reals?
• is it satisfiable over integers?

Automated theorem proving (ATP)

• axioms: ∀x (x+ x = 0), ∀x∀y (x+ y = y+ x)
• do they imply ∀x∀y ((x+ y) + (y+ x) = 0)?

36 / 38

We already know

• normal forms of propositional logic (CNF)
• efficient conversions (Tseitin encoding)
• resolution method and Davis-Putnam algorithm
• DPLL
• two watched literal scheme for unit propagation and conflict detection
• CDCL (clause learning and backjumping)
• literal decision heuristics, restarts
• incremental solving, proof generation, unsat core generation, interpolant
generation

37 / 38

Next time

• first-order logic
• first-order theories
• satisfiability modulo theories (SMT)
• theories of interest (integer arithmetic, real arithmetic, uninterpreted
functions, arrays, bit-vectors, . . .)

38 / 38

	Incremental sat solving
	Proof generation
	Unsatisfiable Cores
	Interpolation
	Where are we?

