Advanced Features of SAT Solvers
IA085: Satisfiability and Automated Reasoning

Martin Jonas

FI MUNI, Spring 2024

- Conflict-Driven Clause Learning (cbcL): DPLL + clause learning + backjumping
- literal decision heuristics

- restarts

1/38

Incremental SAT solving

Normal Usage

1. Call solve(®).

2. Get the answer (+ possibly a model).

3. 772

4. Profit.

2/38

Incremental Usage

Some applications issue queries:

1. Is &4 satisfiable?

2. Is & U &, satisfiable?

3. Is &, U &, U b5 satisfiable?
4, ...

Examples

- symbolic execution

- planning

3/38

Incremental Usage

Modern solvers support

1. clauses ;.

2. Call solve().

3. Do something with the answer.
4. clauses ®,.

5. Call solve().

6. Do something with the answer.
7. clauses ®s.

8. ...

Why is this better than calling solve for &4, for &, U &5, for &, U b, U b3, ...7
4138

Solving Under Assumptions

What if we need to solve multiple queries that are not incremental, but differ in
some literals?

- |s ® A A satisfiable?
- Is d A —=A A B satisfiable?
- Is® A =B A D A E satisfiable?

Examples

- planning (common constraints + individual goals)

- package dependencies (common constraints + individual queries for
installed packages)
5/38

Solving Under Assumptions

Solving under assumptions (MiniSAT)

- Add clauses .

- Call solve([A]) and do something with the result.

- Call solve([—A, B]) and do something with the result.

- Call solve([-B, D, EJ) and do something with the result.

The calls to solve()

6/38

Solving Under Assumptions (alternative API)

Solving under assumptions (CaDiCal)

- Add clauses ¢.

- Call assume(A).

- Call solve() and do something with the result.

- Call assume(—A) and assume(B).

- Call solve() and do something with the result.

- Call assume(—B) and assume(D) and assume(E).
- Call solve() and do something with the result.

7138

Solving Under Assumptions: Implementation

solve([11, 12, ..., 1k])

- before the search, decide [y, I, ..., [, on decision levels

- when backjumping before the real decision level 0, return UNSAT

Nice bonus

- when UNSAT, a slight modification of clause learning (last UIP) can compute a
conflict clause C = —p with u C {ly, 5, ..., g}

- identifies that contributed to the unsatisfiability

8/38

Varying Clauses

What if we need to vary additional , not only literals?

- Is ® A Cq satisfiable?
- Is ® A G A C3 satisfiable?
- Is ® A C, satisfiable?

9/38

Activation Literals

Solution

- add a new to each clause that should be possible to disable
PANGACG ~ q)/\(—!A2VC2)/\(—|A3\/C3)

- use solving under assumptions to enable clauses
- solve([-A2,-A3]) =is ¢ sat?
- solve([A2,-A3]) =is ® AC, sat?
- solve([-A2, A3]) =is ® AC; sat?
- solve([A2, A3])=is®AGC ACsat?

10/38

Proof generation

Proof Generation

Facts

- SAT solvers are used in safety-critical systems
- SAT solvers are pieces of software

- all software has bugs

1/38

Proof Generation

Facts

- SAT solvers are used in safety-critical systems
- SAT solvers are pieces of software

- all software has bugs

6]

1/38

Proof Generation

Facts

- SAT solvers are used in safety-critical systems
- SAT solvers are pieces of software

- all software has bugs

6]

Solution

- besides SAT/UNSAT answer, produce an artifact that can be independently
checked

- for SAT results = model

- for UNSAT results =
11/38

Resolution Proof Generation from DPLL

Recall
Each UNSAT run of DPLL corresponds to a resolution proof of unsatisfiability

Algorithm

- conflicting clauses (leaves) ~ input clauses

- unit propagation steps ~ resolution with the clause that triggered the unit
propagation

- decision nodes ~ resolution steps on the decided variable

12/38

Resolution Proof Generation from ppPLL: Example

{{A, B}, {=B, C}2,{—B, =C}3, {-A, =B, =D}4, {-A, B, ~D}s, {-A, B, D}¢}

[
[A]

[-A]
2N B
[A, B] [A, —B] [-A, B]
C -D C
[A,B,C] [A,—B,—D] [-4, B, (]

13/38

Resolution Proof Generation from ppPLL: Example

{{A, B}, {=B, C}2,{—B, =C}3, {-A, =B, =D}4, {-A, B, ~D}s, {-A, B, D}¢}

[A] / [W
2N

0

[-A] {A} {A}
B RN L

[A, B] [A, 8] [-A, B] {-B} {-A,B} {A,B} {-B}
C -D C /c / -D / C
[A,B,C] [A, —B,—D] [-A,B,C] {-B,C}{~B,~C}{-A,B,~DH-A,B,D} {-B,C}{~B,~C}

13/38

Resolution Proof Generation from cbcL

cbCL observations
- the final conflict was achieved by backtracked literals and unit propagated
literals (no decisions, why?)

- the final conflict is derived by unit propagation from input clauses and learnt
clauses

- the final conflict can be obtained by resolving input clauses and learnt
clauses

- each learnt clause was obtained by resolving input clauses and previous
learnt clauses

14/38

Resolution Proof Generation from cbcL

Algorithm

1. express the final conflict as resolution of input clauses and learnt clauses

2. while the proof contains a leaf that is a clause, replace it by its
resolution proof

Practical considerations

- the solver needs to remember for each learnt clause its antecedent clauses
from which it was obtained

- might require significant amount of memory and makes the solver more
complex

15/38

Clausal Proofs

For easier implementation:

- proof is a list of clauses
- each clause has to be entailed by previous clauses (input or derived)

- SAT solver only outputs the learnt clauses during the search
checks the entailment

- examples: DRUP, DRAT

16 /38

Clausal Proof Formats

{{A, B}1,{—B, C}2,{—B, ~C}3,{—A, ~B, =D}4, {—-A,B,~D}s5,{—-A,B,D}6}

DIMACS formula Clausal proof
p cnf 4 6 -2.0

1 2 0 1

-2 3 0 -120

-2 -3 0 -10

-1 -2 -4 0

-1 2 -4 0

-1 2 40

17/38

Reverse Unit Propagation (RUP)

q)):(h\/b\/...\/ln) = (D/\—\h/\—'[z/\.../\—'[n):J_

To check clause C = {ly,lp, ..., [y} using

1. assign —ly, by, ..., =l
2. check that unit propagation produces a conflict

Reverse Unit Propagation

- obviously not complete
, because it learns clauses that were
conflicting by unit propagation
- previous example was RUP proof
18/38

Delete Reverse Unit Propagation (DRUP)

- proof checking of RUP requires checking large number of clauses

- some were actually deleted by the solver and are not needed for the proof

anymore — express (D) in the proof (DRUP)
DIMACS formula Clausal proof
p cnf 4 6 -2 0
1 2 0 d -2 30
-2 3 0 d -2 -30
-2 -3 0 10
-1 -2 -4 0 -120
-1 2 -4 0 -1 0
-1 2 40 0

19/38

Clausal Proof Formats

Multiple clausal proof formats exist besides DRUP

+ DRAT
* LRAT
* LPR

Most of them have efficient proof checkers (some even).

20/38

https://www.cs.utexas.edu/~marijn/drat-trim/

Clausal Proof Formats

Multiple clausal proof formats exist besides DRUP

+ DRAT
* LRAT
* LPR

Most of them have efficient proof checkers (some even).

Challenge

- implement (p)rRUP proof generation in your solver
- use e.g. DRAT-TRIM for proof checking

(https://www.cs.utexas.edu/~marijn/drat-trim/)
20/38

https://www.cs.utexas.edu/~marijn/drat-trim/

Unsatisfiable Cores

Unsatisfiable Cores

Definition . . .
For an unsatisfiable formula ® in CNF, its subset of clauses W C & is called

if U is unsatisfiable.

Important
The set ¥ does have to be minimal.

Applications

- analysis of requirements
- package dependencies

- abstraction refinement

21/38

Unsatisfiable Cores: Proof-based Algorithm

Proof-based algorithm

1. Compute a resolution proof of unsatisfiability of ®.
2. Return the set W C & of clauses that occur as leaves in the proof.

22/38

Unsatisfiable Cores: Proof-based Algorithm

{{A,B},{D,—E},{-B, C},{—B,-C},{B, ~E, F},{—-A,-B, D},
{-A,—F},{-A,B,-D},{—-E,~F},{-A,B,D}}

23/38

Unsatisfiable Cores: Proof-based Algorithm

{{A,B},{D,—E},{-B, C},{—B,-C},{B, ~E, F},{—-A,-B, D},
{-A,—F},{-A,B,-D},{—-E,~F},{-A,B,D}}

{-B,C} {-B,-C} {A,B} {-A,B,-D} {-A,B,D}

NS NS
{—-B} {-A, B}
AN _—

{A} {—A}

~N 7

0

23/38

Unsatisfiable Cores: Proof-based Algorithm

{ 7{D7_'E}7) 7{87_‘E7 F}?{_‘Aa_'B7_‘D}7
{_'Aa_'F}v v{ﬁE’_'F}’ }

23/38

Unsatisfiable Cores: Assumption-based Algorithm

Assumption-based algorithm

1. Add a new activation literal —A; to each clause C; of ®.
Solve under assumptions solve([A}, Ay, ..., Aje|])-
The result will be UNSAT.

The set F C {A1, Ay, ..., Ajp|} Of corresponds to an
unsatisfiable core of ®.

= & N

24 (38

Unsatisfiable Cores: Assumption-based Algorithm

{{A, B},
{D, £},
{-B,C},
{=B,~C},
(B, —E, F},
{-A, -8B, D},
{=A—F}
{-A, B,-D},
{—E, ~F},

{-A,B,D}}
25/38

Unsatisfiable Cores: Assumption-based Algorithm

{{A, B}, {{-A1,A,B},
{D,—E}, {~A;, D, ~E},
{-B,C}, {-A3,-B, C},
{-B,~C}, {—A4, -B, = C},
{B,—E, F}, {~As, B, =, F},
{-A,-B, ~D}, {—-As, -A, -B, =D},
{-A,=F}, {~A7,-A, =F},
{-A, B, D}, {—-As,—A, B, D},
{—E,—F}, {—Aq, —E, =F},
{-A,B,D}} {—A1,-A,B,D}}

25/38

Unsatisfiable Cores: Assumption-based Algorithm

{{A, B}, {{-A1,A,B},

{D,—E}, {~A;, D, ~E},

{-B,C}, {-A3,-B, C},

{-B,~C}, {—A4, -B, = C},

{B,—E, F}, {~As, B, =, F}, solve([Ar, A, ..., Ap]) =
{-A,-B, ~D}, {—-As, -A, -B, =D},

{-A,=F}, {~A7,-A, =F},

{-A, B, D}, {—-As,—A, B, D},

{—E,—F}, {—Aq, —E, =F},

{-A,B,D}} {—A1,-A,B,D}}

25/38

Unsatisfiable Cores: Assumption-based Algorithm

{{A, B}, {{-A1,A, B},

{D,—E}, {42, D, —E},

{-B,¢}, {43, -8B, C},

{-B,~C}, {~Aq4, ~B,~C},

{B,—E, F}, {~As, B, —E, F}, solve([A, Ay, ..., A]) = UNSAT
{-A, -B, -D}, {~As, -A, —B, -D},

{-A, —F}, {47, -A, =F},

{-A, B, D}, {-Ag, —A, B, -D},

{~E,-F}, {~Ag, ~E, -F},

{-A,B,D}} {410, -A, B, D}}

25/38

Unsatisfiable Cores: Assumption-based Algorithm

(4.8}, {{-#.A.8).
{D,—E}, {~A2,D, —E},
{-B.C}. {~A3,-B,C},
{-B,-C}, {~A4, =B, ~C},
{B,—E, F}, {~As, B, -, F}, solve([A, Ay, ..., An]) = UNSAT
{—A,-B, D}, {—As,-A, =B, =D}, failed literals {Aq,A3, A4, Ag, A0}
{-A,—F}, (A7, -A, -F},
{-A, B,-D}, {-As, —A, B, =D},
{~E,~F}, {~ho, E,F},
{-A,B,D}} {410, -A, B, D}}

25/38

Unsatisfiable Cores: Assumption-based Algorithm

{ : {{-,A, B},
{D,—E}, {—-A,,D,—E},
: {—As,-B, C},
, {—A4, -B, = C},
{B,—E, F}, {-As, B, -E, F}, solve([A1, Ay, ..., A0]) = UNSAT
{-A,-B, ~D}, {—-As, -A, -B, =D}, failed literals {A1, A3, A4, Ag, Ao}
{-A, ~F}, {—-A;, A, = F},
) {—As, A, B, =D},
{—E,—F}, {—Aq, —E, =F},
} {=A10,-A,B,D}}

25/38

Interpolation

Craig Interpolants

Definition _(Cralg Interpolant, 1957) .
Given a pair of formulas (A, B) suchthat AAB = L, a IS a

formula | such that

CAE
- BAIEL
- Atoms(I) C Atoms(A) N Atoms(B)

This is the definition used in formal methods, sometimes called

26 /38

Craig Interpolants: Examples

A = A1/\(—|A1\/C1)/\A2/\(—|A2\/C2)/\C3
= (_‘CWVB‘I)/\(_‘C2\/_‘BW)/\C3

27 /38

Craig Interpolants: Examples

A = A1/\(—|A1\/C1)/\A2/\(—|A2\/C2)/\C3
= (_‘Cj V B1) A (—\C2 V _‘Bj) A C3
I = GANG

27 /38

Craig Interpolants: Examples

A = A1/\(—|A1\/C1)/\A2/\(—|A2\/C2)/\C3
= (_‘Cj V B1) A (—\C2 V _‘Bj) A C3
I = GANG

= A1/\(—|A1\/C1\/C3)/\A2/\(—\A2\/C2\/C3)
B = (ﬂC‘]\/B1)/\(—\C2\/—\Bq)/\ﬂC3

27 /38

Craig Interpolants: Examples

A = A1/\(—|A1\/C1)/\A2/\(—|A2\/C2)/\C3
= (_‘Cj V B1) A (—\C2 V _‘Bj) A C3
I = GANG

= A1/\(—|A1\/C1\/C3)/\A2/\(—\A2\/C2\/C3)
B = (ﬂC‘]\/B1)/\(—\C2\/—\Bq)/\ﬂC3
I = (GVG)A(GVGEG)

27 /38

Craig Interpolants (alternative definition)

Definition Cralglnterpolant alternative) .
Given a pair of formulas (A, B) such that A =B, a is a formula |

such that

CAE

| =B
- Atoms(I) C€ Atoms(A) N Atoms(B)

The definitions are dual: (A,B) is a Craig interpolant iff (A, —B) is a Craig
interpolant in the above sense.

We discuss only reverse Craig interpolants from now on.

28 /38

Craig Interpolation: Usage

Interpolants widely used in formal verification

- overapproximation of image
- computation of function summaries
- generalization of spurious counterexamples

- refinement of predicate abstraction

29 /38

Craig Interpolation: Existence and Size

Theorem (McMillan, 2003) .
For every pair of propositional formulas (A, B) such that AAB = L, a Craig

interpolant can be computed in
of unsatisfiability of A A B.

30/38

Craig Interpolation: Existence and Size

Theorem (McMillan, 2003) .
For every pair of propositional formulas (A, B) such that AAB = L, a Craig

interpolant can be computed in
of unsatisfiability of A A B.

What does it say about the size of interpolant?

30/38

Craig Interpolation: Existence and Size

Theorem (McMillan, 2003) .
For every pair of propositional formulas (A, B) such that AAB = L, a Craig

interpolant can be computed in
of unsatisfiability of A A B.

What does it say about the size of interpolant?

What does it say about size with respect to |A| + |B|?

30/38

Craig Interpolation: Algorithm

Computing Craig Interpolants

1. Get resolution proof of unsatisfiability of A A B.
2. Label nodes of the proof by , starting from leaves.

3. The label of root of the proof is the Craig interpolant of (A, B).

31/38

Preliminary Interpolants

Definition
Aformula fis a of the resolution proof node C (written

c[f]) if

1L AES

2. BAfEC

3. Atoms(C) C Atoms(A) U Atoms(B)

4. Atoms(f) C Atoms(A) N (Atoms(B) U Atoms(C))

Preliminary interpolant f of the root C = L is the real Craig interpolant of (A, B).

32/38

Interpolation Algorithm

Leaves

CeA CeB

ca Eul

where ¢\[replaces all Lin o by T and =l by L

33/38

Interpolation Algorithm

Leaves
WCEA WCEB
Inner nodes
(tvO Tl (=tvD)lg] (VO[] (~lvD)lg]
VD[] var(l) € Atoms(B) VD) i var(l) ¢ Atoms(B)

where ¢\[replaces all Lin o by T and -l by L

33/38

Interpolation Algorithm

Leaves
W CeA W CeB
Inner nodes
(Lv i)cbqu)(E‘[Avg[])) 91 ar(1) e Atoms() (ch)v U[;]) [(ﬁ’ v D)][g] var(l) ¢ Atoms(B)

where ¢\[replaces all Lin o by T and -l by L

33/38

Interpolation Algorithm

Leaves
WCEA WCEB
Inner nodes
(VO (=lvD)g] (VO (=LvD)g]
(CVD) [Ad] var(l) € Atoms(B) VD) vl var(l) ¢ Atoms(B)

where ¢\[replaces all Lin o by T and -l by L

33/38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

A -A VG VG A, -A, VG VG
N N7
G VG —C3 G VG —C3
- -

G -GV B, G -GV B,
N N
B, -8,

\ /
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

A [A1] -A VG VG A, -A, VG VG
N N7
G VG —C3 G VG —C3

G -GV B, G -GV B,
N N
B, -8,

\ /
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

Aq [A1] -A VG VG [ﬁA1 \VAGRY; C3] Ay -A, VG VG
N N7
G VG —C3 G VG —C3
- -

G -GV By G =C, V =B,
N N
B, -8,

\ /
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

Aq [A1] -A VG VG [ﬁA1 \VAGRY; C3] Ay [Az] -A, VG VG
N N7
G VG —C3 G VG —C3
- -

G -GV By G =C, V =B,
N N
B4 —B;

\ /
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

Aq [A1] -A VG VG [ﬁA1 \VAGRY; C3] Ay [Az] -A, VG VG [ﬁAz VGV C3]
N N7
G VG —C3 G VG —C3
- -
G -GV By G =C, V =B,
N N
B, -8,
\ /
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

Aq [A1] -A VG VG [ﬁA1 \VAGRY; C3] Ay [Az] -A, VG VG [ﬁAz VGV C3]
N N7
G VG —C3 [T] G VG —C3
- -
G -GV By G =C, V =B,
N N
B, -8,
\ /
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

A [A1] -A VG VG [ﬁA1 \VAGRY; C3] A, [Az] -A, VG VG [ﬁAz VGV C3]
N N
GV G -G [T] G VG —G [T]
- |
G -GV B, G -GV B,
N N
B, -8,
\\\\\\\\\\\\\\\ ///////
1

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

A [A1] -A VG VG [ﬁA1 \VAGRY; C3] A, [Az] -A, VG VG [ﬁAz VGV C3]
N N
GV G -G [T] G VG —G [T]
- |
G ~Cy V By [T] G G,V =B,
N N
B, -8,
\\\\\\\\\\\\\\\ ///////
1

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

Aq [A1] -A VG VG [ﬁA1 \VAGRY; C3] Ay [Az] -A, VG VG [ﬁAz VGV C3]
N N7
G VG —C3 [T] G VG —C3 [T]
- |
G ~Cy V By [T] G ~C> V=B [T]
N N
B, -8,
\ /
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

Aq [A1] -A VG VG [ﬁA1 \VAGRY; C3] Ay [Az] -A, VG VG [ﬁAz VGV C3]
N N7
G VG [C1 V C3] —C3 [T] G VG —C3 [T]
- |
G ~Cy V By [T] G ~C> V=B [T]
N N
B, -8,
\ /
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

Aq [A1] -A VG VG [ﬁA1 \VAGRY; C3] Ay [Az] -A, VG VG [ﬁAz VGV C3]
N N 7
G VG [C1 V C3] —C3 [T] G VG [C2 \Y C3] —C3 [T]
- |
G ~Cy V By [T] G ~C> V=B [T]
N N
B, -8,
\ /
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

Aq [A1] -A VG VG [ﬁA1 \VAGRY; C3] Ay [Az] -A, VG VG [ﬁAz VGV C3]
N N 7
G VG [C1 V C3] —C3 [T] G VG [C2 \Y C3] —C3 [T]
- |
G [C1 V C3] -GV By [T] G -G vV =By [T]
N N
B, -8,
\ /
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

Aq [A1] -A VG VG [ﬁA1 \VAGRY; C3] Ay [Az] -A, VG VG [ﬁAz VGV C3]
N N 7
G VG [C1 V C3] —C3 [T] G VG [C2 \Y C3] —C3 [T]
- |
G [C1 V C3] -GV By [T] G [Cz V C3] -G vV =By [T]
N N
B4 —B;
\ /
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

Aq [A1] -A VG VG [ﬁA1 \VAGRY; C3] Ay [Az] -A, VG VG [ﬁAz VGV C3]
N N 7
G VG [C1 V C3] —C3 [T] G VG [C2 V C3] —C3 [T]
- |
G [C1 V C3] -GV By [T] G [Cz V C3] -G vV =By [T]
N N
B: [C1 v 3] B,
/
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

Aq [A1] -A VG VG [ﬁA1 \VAGRY; C3] Ay [Az] -A, VG VG [ﬁAz VGV C3]
N N 7
G VG [C1 V C3] —C3 [T] G VG [C2 \Y C3] —C3 [T]
- |
G [C1 V C3] -GV By [T] G [Cz V C3] -G vV =By [T]
N N
B [Cq \Y C3] —B, [Cz \Y Cg]
/
L

34 /38

Interpolation Algorithm: Example

A = ANEAVGOVG)AAA (A VG VEG)
= (ﬂCq V 81) VAN (ﬁCz V —|Bq) A —C3

A [A1] -A VG VG [ﬁA1 \VAGRY; C3] A, [Az] -A, VG VG [ﬁAz VGV C3]
N N
G VG [C1 V C3] -(3 [T] G VG [CZ vV C3] -G [T]
- |
G [C1 V C3] -GV By [T] G [Cz V C3] -G vV =By [T]
N N
B [Cq \Y C3] —B, [Cz \Y Cg]
/
L]

34 /38

Interpolation Algorithm: Correctness

We can prove that
1.0f
Cll ,
then fis a preliminary interpolant of C

2. if
C[fl Dlg]
E [n]

and fis a preliminary interpolant of C
and g is preliminary interpolant of D,
then h is preliminary interpolant of E

35/38

Where are we?

Propositional satisfiability (SAT)

- (AV-B)A(-AV Q)
- is it satisfiable?

o
Satisfiability modulo theories (smT)

cX=1TAX=y+y ANy>0
- is it satisfiable over reals?
- is it satisfiable over integers?

Automated theorem proving (ATP)

- axioms: Vx (X +x = 0), XYy (x+y =y + Xx)

- do they imply Vxvy ((x + V) + (y + x) = 0)?
36 /38

We already know

- normal forms of propositional logic (CNF)

- efficient conversions (Tseitin encoding)

- resolution method and Davis-Putnam algorithm

- DPLL

- two watched literal scheme for unit propagation and conflict detection
- cbcL (clause learning and backjumping)

- literal decision heuristics, restarts

- incremental solving, proof generation, unsat core generation, interpolant
generation

37/38

- first-order logic
- first-order theories
- satisfiability modulo theories (smT)

- theories of interest (integer arithmetic, real arithmetic, uninterpreted
functions, arrays, bit-vectors, ...)

38/38

	Incremental sat solving
	Proof generation
	Unsatisfiable Cores
	Interpolation
	Where are we?

