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Where are we?

Satisfiability modulo theories (smT)

crx=1TANx=y+y ANy>0

- Is It satisfiable over reals?

- Is it satisfiable over integers?

- is it satisfiable over integers represented by 8 bits?

- Is it satisfiable over floating point numbers represented by 32 bits?

For next four lectures, we will be dealing mostly with
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Applications

SMT solvers are widely used in practice

- planning

- scheduling

- verification of hardware
- compiler optimizations
- verification of software

2/36



Applications

1 int x = read();

2 int y = read();

3 int z = read();

4 if (x > 10 &5y '= 0)
5 {

6 print(z / (x + y));
7 }

Contains division by zero precisely if the formula
x>10 A —(y=0) AN z4+y=0

is satisfiable.
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First-order logic



First-Order Logic

Propositional logic speaks only about atomic propositions

- are true or false
- have no internal structure

First-order logic speaks about objects, their properties and relations among them.
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First-Order Logic

Propositional logic speaks only about atomic propositions

- are true or false
- have no internal structure

First-order logic speaks about objects, their properties and relations among them.
Examples

- ds. Human(s) A Mortal(s).
- Vs.Human(s) — Mortal(s).
s Jrdy.x <5 ANy<3 A 2-(x+y)>20.

In addition to logical symbols, first-order formulas contain variables, constant

symbols, function symbols, and predicate symbols.
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First-Order Logic - Syntax

Suppose we have

-aset©f ={f g,...} of function symbols and
-aset P ={R,S, ...} of predicate symbols.

Each function symbol f and predicate symbol P has its ar(f) and ar(P).
Function symbols of arity 0 are called

The set X = XF U X?P is called a

Example
- F = {+,-,0,1}
- 2P ={=<}
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First-Order Logic - Syntax

(2-)Term

1. avariable - z,v, 2, . ..
2. a function symbol applied to ar(f) terms - f(x), g(f(x),y), ..
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(2-)Term

1. avariable - z,v, 2, . ..
2. a function symbol applied to ar(f) terms - f(x), g(f(x),y), ..

(3)-Literal

1. a predicate symbol applied to ar(P) terms - R(z), S(f(z),y), ...
2. a negation of predicate symbol applied to ar(P) terms -

_'R($)7 ﬁS(f(x)vy)’ 000
(3)-Formula

1. a Boolean combination of literals - (R(x) V =R(y)) A S(f(x),y), ...

2. a quantifier applied to a formula - Vz (R(z)) ,. . ..
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First-Order Logic - Syntactic Conventions and Terminology

Notation

- instead of +(r, s) write r + s (also for other infix function symbols)

- instead of < (r, s) write r < s (also for other infix predicate symbols)
- instead of 1() write 1 (also for other constants)

- instead of VaVy(p A ¢) write VaVy. p Ay

Terminology

- an occurrence of a variable is if it is not bound by a quantifier
- a formula without free occurrences of variables is ora
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First-Order Logic - Semantics

Is the following formula true?

Vedy.z <y N y<az+1
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First-Order Logic - Semantics

Is the following formula true?
Vedy.z <y N y<az+1

It depends.

- What is the domain of z and y?
- What does the function symbol + mean?

- What does the predicate symbol < mean?

Meaning of these three things is given by a
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First-Order Logic - Structures

A

- determines the set of objects and behavior of functions/predicates
- a pair of
1. a non-empty set A called ,
2. amap (_)* that
- to each f € =¥ assigns a function fA: A¥() 5 A,
- to each R € ¥\ {=} assigns a relation R* C A>*(®)
- we suppose that =" is the identity relation.
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First-Order Logic - Structure Examples

A= (4, ()A) where

A=17
+Az,y) =z +y
<A={(z,y) |z <y}

M4 =1
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First-Order Logic - Structure Examples

A= (4, ()A) where B = (B, (_)P) where
A=7 B ={o,e}
+M(z,y) =z +y +E(x,y) =y
<A ={(z,y) |z <y} <F ={(0,0),(s,0)}
1A =1 18—
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First-Order Logic - Interpretation

The formulas can also contain

for a X-structure A = (A, (_)A)

- determines the values of the variables

camap u: Vars - A

Y-interpretation

- a pair (A, p) of a X-structure and a valuation
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First-Order Logic — Evaluation

Given an interpretation Z = (A, ), we can

- each term ¢ to a value [t]* € 4
- each formula ¢ to a value [¢]* € {T, L}
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First-Order Logic — Evaluation
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First-Order Logic — Evaluation

A= (Z,(_)*) where

+Az,y) =z +y

<A ={(z,9) |z <y}
=1

Given p(z) =1, pu(y) = 3:
5 [[y+1]](¢47u) _
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Models and Entailment

Interpretation Z formula ¢

i el =T
- writtenZ E ¢
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Entailment and Validity

Formula ¢ formula ¢

- If every interpretation that satisfies ¢ also satisfies v
- written ¢ =9

- example: f(z) =yAx=z E f(2)=y

- negative example: z <y F 2 +1<y+1

Formula ¢ is

- if every interpretation satisfies ¢
- written E ¢
- example: | P(f(x)) V ~P(f(x))
- negative example: fx + 0 ==z
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First-Order Satisfiability

Definition . . . .
Formula ¢ is if there is a X-interpretation (A, i) such that (A, u) | ¢.
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First-Order Satisfiability

Definition . . . .
Formula ¢ is if there is a X-interpretation (A, i) such that (A, u) | ¢.

Isformula (z < y) A (y+ 1< x) satisfiable? Yes. ®

Solution
Pick a subset of X-structures in which we are interested.

This gives rise to the
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Satisfiability Modulo Theories (SMT)




Satisfiability Modulo Theories

Definition

A is a set of ¥-structures.

Definition . . . .
Aformula ¢ is if there is a ¥-interpretation (A, u)

such that (A, u) E .
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Satisfiability Modulo Theories - Example

Consider the structure Z with the universe Z and the standard interpretation of
operations +, <, and 1.

The formula (z <y) A (y+1<z)is modulo theory T = {Z}.

The formula (zx <y) A (y<zx+2)is modulo theory T = {Z}.
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Linear Integer Arithmetic (LIA)

. Z:{0717+7_7:7§}

- Tria is a set of a single structure with A = Z and the standard interpretation
of operations
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Linear Integer Arithmetic (LIA)

. Z:{0717+7_7:7<}

- Tria is a set of a single structure with A = Z and the standard interpretation
of operations

1<z AN B<z+y) N (1<y)
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Z=(Ap)is of ¢

cifAeTand[o)f =T
- written Z Er ¢
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Entailment and Validity

@ Y
- if every T-model of ¢ Is also a T-model of ¥

- written ¢ =7 ¢
cexample:z <y FEr, 2 +1<y+1

pis
- ifeveryZ = (A, p) with A € T is a T-model of ¢
- equivalently T =7 ¢
- written =7 ¢
- example: Eq , v+ 0=z
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Theories of interest






https://smtlib.cs.uiowa.edu/logics.shtml

Linear Integer Arithmetic (LIA)

- E - {0717+7_7:7S}
- Tria is a set of a single structure with A = Z and the standard interpretation
of operations
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1<z A B<z+4+y) AN (1<y)

- satisfiability of arbitrary formulas is decidable

- complexity of satisfiability of arbitrary formulas is in ©(2%") (Fischer, Rabin,
1974)

- complexity of satisfiability of arbitrary formulas is in (9(222kn) (Oppen, 1978)

- satisfiability of quantifier-free formulas is NP-complete

- satisfiability of conjunctions of literals is NP-complete
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Linear Rational Arithmetic (LRA)
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Theory of Non-Linear Integer Arithmetic (NIA)
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of operations
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Theory of Non-Linear Integer Arithmetic (NIA)

0 W= {0717+7_7'7:7§}
- Tnia is a set of a single structure with A = Z and the standard interpretation
of operations

1<z A 3<z-y) A(1<y)

- satisfiability of conjunctions of quantifier-free formulas is undecidable
(Matiyasevich, 1971)
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Non-Linear Real Arithmetic (NRA)

0 W= {0717+7_7'7:7§}
- Tnra IS a set of a single structure with A = R and the standard
interpretation of operations
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Arrays (A)

- ¥ = {read, write, =}
- Ty is a set of structures, where A is a set of arrays and elements and

- read(a, i) is interpreted as an element on index i of array a
- write(a, ,v) is interpreted as an array a after replacing element on index i by v
- equality is defined only for elements
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Fixed-Size Bit-Vectors (BV)

= {pg, Xy &g =5 <l <Gy k> 2w @nd many more
- Tgy is a set of structures where BV is a set of finite sequences of bits
(bit-vectors) and

- 4 adds two sequences of k-bits representing unsigned integers and returns a
sequence of k-bits
- Ik Is a sequence of k-bits that represents unsigned number 1
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Equality and Uninterpreted Functions (UF)

. Z:{:7fag7h'7"'}
- Tyr Is a set of

r=v Ay=g(2) N flgx))#fly) N z=v

- satisfiability of arbitrary formulas is undecidable
- satisfiability of quantifier-free formulas is decidable (Ackermann, 1954)
- satisfiability of quantifier-free formulas is NP-complete

- satisfiability of conjunctions of literals is in O(n - log(n))
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- theory of strings (s; + s, len(s), substr(s, from, to), contains(sq, s7), . ..)
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Standard view of theories




Theory: Standard Definitions

Definition
A (Z-)theory is a set of

Definition . . . . .
A formula ¢ is satisfiable modulo theory T if there is a ¥-interpretation Z such

that

- ZEgand
- ITEyforallyeT

32/36



Two views of theories

Linear Natural Arithmetic

- X ={0,1,+4,=,<}
SMT definition

- T = {(N, ()M}, where (_)N is the obvious standard interpretation
Standard definition (Presburger axioms)
T={Ve. -(0=x+1),

VaVy. z +1=y+1=>z =y,
Ve. z 4+ 0 =z,
VaVy. o+ (y+1) = (z +y) + 1} U
{(P(0) AVz(P(z) — P(x+1))) — YyP(y) | P is a formula with free variable =}
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More examples

- The theory of uninterpreted functions with equality is Tur =
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Two views of theories

More examples

- The theory of uninterpreted functions with equality is Tyr = 0
- The axioms of theory of arrays (McCarthy):

Ty ={Va,i,j.(i=7 — read(a,i) =read(a,j)),
Va,v,i,7. (i =j — read(write(a,i,v),7) = v),

Va,v,i,j. (i #j — read(write(a,i,v),j) =read(a,j))}
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These two views are equivalent
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Two views of theories

These two views are equivalent

- set of X-structures = the set of formulas that are true in all these structures

- set of axioms = the set of X-structures that satisfy all the axioms

Sometimes, one view is better

- A set of structures satisfying axioms of Peano arithmetic is not easily
describable.

- A set of axioms for NRA is infinite and complicated.

- A set of axioms for NIA is not recursive. (Godel, 1931)
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- algorithms solving SMT
- CDCL(T) algorithm
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