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Where are we?

Satisfiability modulo theories (SMT)

• x = 1 ∧ x = y + y ∧ y > 0
• is it satisfiable over reals?
• is it satisfiable over integers?
• is it satisfiable over integers represented by 8 bits?
• is it satisfiable over floating point numbers represented by 32 bits?

For next four lectures, we will be dealing mostly with quantifier-free formulas.
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Applications

SMT solvers are widely used in practice

• planning
• scheduling
• verification of hardware
• compiler optimizations
• verification of software
• . . .
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Applications

1 int x = read();
2 int y = read();
3 int z = read();
4 if (x > 10 && y != 0)
5 {
6 print(z / (x + y));
7 }

Contains division by zero precisely if the formula

x > 10 ∧ ¬(y = 0) ∧ x+ y = 0

is satisfiable.
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First-order logic



First-Order Logic

Propositional logic speaks only about atomic propositions

• are true or false
• have no internal structure

First-order logic speaks about objects, their properties and relations among them.

Examples

• ∃s.Human(s) ∧ Mortal(s).
• ∀s.Human(s) → Mortal(s).
• ∃x∃y. x < 5 ∧ y < 3 ∧ 2 · (x+ y) > 20.

In addition to logical symbols, first-order formulas contain variables, constant
symbols, function symbols, and predicate symbols.
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First-Order Logic – Syntax

Suppose we have

• a set ΣF = {f, g, . . .} of function symbols and
• a set ΣP = {R,S, . . .} of predicate symbols.

Each function symbol f and predicate symbol P has its arity ar(f) and ar(P ).
Function symbols of arity 0 are called constants.

The set Σ = ΣF ∪ ΣP is called a signature.

Example

• ΣF = {+,−, 0, 1}
• ΣP = {=,≤}
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First-Order Logic – Syntax

(Σ-)Term

1. a variable – x, y, z, . . .
2. a function symbol applied to ar(f) terms – f(x), g(f(x), y), …

(Σ)-Literal

1. a predicate symbol applied to ar(P ) terms – R(x), S(f(x), y), . . .
2. a negation of predicate symbol applied to ar(P ) terms –

¬R(x),¬S(f(x), y), . . .

(Σ)-Formula

1. a Boolean combination of literals – (R(x) ∨ ¬R(y)) ∧ S(f(x), y), . . .
2. a quantifier applied to a formula – ∀x (R(x)) , . . ..
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First-Order Logic – Syntactic Conventions and Terminology

Notation

• instead of +(r, s) write r + s (also for other infix function symbols)
• instead of ≤ (r, s) write r ≤ s (also for other infix predicate symbols)
• instead of 1() write 1 (also for other constants)
• instead of ∀x∀y(φ ∧ ψ) write ∀x∀y. φ ∧ ψ

Terminology

• an occurrence of a variable is free if it is not bound by a quantifier
• a formula without free occurrences of variables is closed or a sentence
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First-Order Logic – Semantics

Is the following formula true?

∀x∃y. x < y ∧ y < x+ 1

It depends.

• What is the domain of x and y?
• What does the function symbol + mean?
• What does the predicate symbol < mean?

Meaning of these three things is given by a Σ-structure.
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First-Order Logic – Structures

Σ-structure A

• determines the set of objects and behavior of functions/predicates
• a pair of

1. a non-empty set A called the universe,
2. a map (_)A that

• to each f ∈ ΣF assigns a function fA : Aar(f) → A,
• to each R ∈ ΣP \ {=} assigns a relation RA ⊆ Aar(R),
• we suppose that =A is the identity relation.
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First-Order Logic – Structure Examples

A =
(
A, (_)A

)
where

A = Z

+A(x, y) = x+ y

<A = {(x, y) | x < y}
1A = 1

B =
(
B, (_)B

)
where

B = {◦, •}
+B(x, y) = y

<B = {(◦, ◦), (•, ◦)}
1B = •
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First-Order Logic – Interpretation

The formulas can also contain free variables.

Valuation for a Σ-structure A = (A, (_)A)

• determines the values of the variables
• a map µ : Vars → A

Σ-interpretation

• a pair (A, µ) of a Σ-structure and a valuation
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First-Order Logic – Evaluation

Given an interpretation I = (A, µ), we can evaluate

• each term t to a value JtKI ∈ A

• each formula φ to a value JφKI ∈ {⊤,⊥}
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First-Order Logic – Evaluation

A =
(
Z, (_)A

)
where

+A(x, y) = x+ y

<A = {(x, y) | x < y}
1A = 1

Given µ(x) = 1, µ(y) = 3:
• Jy + 1K(A,µ) = 4
• Jy + 1 < xK(A,µ) = ⊥
• J(x < y) ∧ (y + 1 < x)K(A,µ) = ⊥

B =
(
{◦, •}, (_)B

)
where

+B(x, y) = y

<B = {(◦, ◦), (•, ◦)}
1B = •

Given µ(x) = ◦, µ(y) = ◦:
• Jy + 1K(B,µ) = •
• Jy + 1 < xK(B,µ) = ⊤
• J(x < y) ∧ (y + 1 < x)K(B,µ) = ⊤
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Models and Entailment

Interpretation I satisfies formula φ

• if JφKI = ⊤
• written I |= φ
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Entailment and Validity

Formula φ entails formula ψ

• if every interpretation that satisfies φ also satisfies ψ
• written φ |= ψ

• example: f(x) = y ∧ x = z |= f(z) = y

• negative example: x < y ̸|= x+ 1 < y + 1

Formula φ is valid

• if every interpretation satisfies φ
• written |= φ

• example: |= P (f(x)) ∨ ¬P (f(x))
• negative example: ̸|= x+ 0 = x
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First-Order Satisfiability

Definition
Formula φ is satisfiable if there is a Σ-interpretation (A, µ) such that (A, µ) |= φ.

Is formula (x < y) ∧ (y + 1 < x) satisfiable? Yes. /

Solution
Pick a subset of Σ-structures in which we are interested.
This gives rise to the Satisfiability Modulo Theories
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Satisfiability Modulo Theories (SMT)



Satisfiability Modulo Theories

Definition
A (Σ-)theory is a set of Σ-structures.

Definition
A formula φ is satisfiable modulo theory T if there is a Σ-interpretation (A, µ)
with A ∈ T such that (A, µ) |= φ.
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Satisfiability Modulo Theories – Example

Consider the structure Z with the universe Z and the standard interpretation of
operations +, <, and 1.

The formula (x < y) ∧ (y + 1 < x) is unsatisfiable modulo theory T = {Z}.

The formula (x < y) ∧ (y < x+ 2) is satisfiable modulo theory T = {Z}.
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Linear Integer Arithmetic (LIA)

• Σ = {0, 1,+,−,=,≤}
• TLIA is a set of a single structure with A = Z and the standard interpretation
of operations

1 ≤ x ∧ (3 ≤ x+ y) ∧ (1 ≤ y)
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T-models

I = (A, µ) is T -model of φ

• if A ∈ T and JφKI = ⊤
• written I |=T φ
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Entailment and Validity

φ T -entails ψ

• if every T -model of φ is also a T -model of ψ
• written φ |=T ψ

• example: x < y |=TLIA
x+ 1 < y + 1

φ is T -valid

• if every I = (A, µ) with A ∈ T is a T -model of φ
• equivalently ⊤ |=T φ

• written |=T φ

• example: |=TLIA
x+ 0 = x
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Theories of interest



Logics in SMT-LIB

[https://smtlib.cs.uiowa.edu/logics.shtml] 22 / 36

https://smtlib.cs.uiowa.edu/logics.shtml


Linear Integer Arithmetic (LIA)

• Σ = {0, 1,+,−,=,≤}
• TLIA is a set of a single structure with A = Z and the standard interpretation
of operations

1 ≤ x ∧ (3 ≤ x+ y) ∧ (1 ≤ y)

• satisfiability of arbitrary formulas is decidable
• complexity of satisfiability of arbitrary formulas is in Ω(22n) (Fischer, Rabin,
1974)

• complexity of satisfiability of arbitrary formulas is in O(222
kn

) (Oppen, 1978)
• satisfiability of quantifier-free formulas is NP-complete
• satisfiability of conjunctions of literals is NP-complete
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Linear Rational Arithmetic (LRA)

• Σ = {0, 1,+,−,=,≤}
• TLRA is a set of a single structure with A = Q and the standard
interpretation of operations

1 ≤ x ∧ (3 ≤ x+ y) ∧ (1 ≤ y)

• satisfiability of arbitrary formulas is decidable
• complexity of satisfiability of arbitrary formulas is in Ω(2n) (Fischer, Rabin,
1974)

• complexity of satisfiability of arbitrary formulas is in O(22kn) (Ferrante,
Rackoff, 1975)

• satisfiability of quantifier-free formulas is NP-complete
• satisfiability of conjunctions of literals in P (Khachiyan, 1979)
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Rackoff, 1975)

• satisfiability of quantifier-free formulas is NP-complete
• satisfiability of conjunctions of literals in P (Khachiyan, 1979)
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Theory of Non-Linear Integer Arithmetic (NIA)

• Σ = {0, 1,+,−, ·,=,≤}
• TNIA is a set of a single structure with A = Z and the standard interpretation
of operations

1 ≤ x ∧ (3 ≤ x · y) ∧ (1 ≤ y)

• satisfiability of conjunctions of quantifier-free formulas is undecidable
(Matiyasevich, 1971)
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Non-Linear Real Arithmetic (NRA)

• Σ = {0, 1,+,−, ·,=,≤}
• TNRA is a set of a single structure with A = R and the standard
interpretation of operations

1 ≤ x ∧ (3 ≤ x · y) ∧ (1 ≤ y)

• satisfiability of arbitrary formulas is decidable (Tarski, 1951)
• complexity of satisfiability of arbitrary formulas is in O(22kn) (Collins, 1975)
• complexity of satisfiability of conjunctions of literals in O(22kn)
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Arrays (A)

• Σ = {read,write,=}
• TA is a set of structures, where A is a set of arrays and elements and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element on index i by v
– equality is defined only for elements

read(a, i) = u ∧ (read(a, i) = read(write(a, i, v), i))

• satisfiability of arbitrary formulas is undecidable
• satisfiability of quantifier-free formulas is NP-complete
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Arrays with Extensionality (AX)

• Σ = {read,write,=}
• TA is a set of structures where A is a set of arrays and elements and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element on index i by v

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (a = b)

• satisfiability of arbitrary formulas is undecidable
• satisfiability of quantifier-free formulas is NP-complete
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Fixed-Size Bit-Vectors (BV)

• Σ = {+[k],×[k],&[k],=, <
u
[k], <

s
[k] 1[k], 2[k]} and many more

• TBV is a set of structures where BV is a set of finite sequences of bits
(bit-vectors) and
– +[k] adds two sequences of k-bits representing unsigned integers and returns a
sequence of k-bits

– 1[k] is a sequence of k-bits that represents unsigned number 1
– . . .

x+[8] 2[8] <u
[8] x[8]

• satisfiability of arbitrary formulas is PSPACE-complete
• satisfiability of quantifier-free formulas is NP-complete
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Equality and Uninterpreted Functions (UF)

• Σ = {=, f, g, h, . . .}
• TUF is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) ̸= f(y) ∧ z = v

• satisfiability of arbitrary formulas is undecidable
• satisfiability of quantifier-free formulas is decidable (Ackermann, 1954)
• satisfiability of quantifier-free formulas is NP-complete
• satisfiability of conjunctions of literals is in O(n · log(n))

30 / 36



Equality and Uninterpreted Functions (UF)

• Σ = {=, f, g, h, . . .}
• TUF is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) ̸= f(y) ∧ z = v

• satisfiability of arbitrary formulas is undecidable
• satisfiability of quantifier-free formulas is decidable (Ackermann, 1954)
• satisfiability of quantifier-free formulas is NP-complete
• satisfiability of conjunctions of literals is in O(n · log(n))

30 / 36



Equality and Uninterpreted Functions (UF)

• Σ = {=, f, g, h, . . .}
• TUF is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) ̸= f(y) ∧ z = v

• satisfiability of arbitrary formulas is undecidable

• satisfiability of quantifier-free formulas is decidable (Ackermann, 1954)
• satisfiability of quantifier-free formulas is NP-complete
• satisfiability of conjunctions of literals is in O(n · log(n))

30 / 36



Equality and Uninterpreted Functions (UF)

• Σ = {=, f, g, h, . . .}
• TUF is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) ̸= f(y) ∧ z = v

• satisfiability of arbitrary formulas is undecidable
• satisfiability of quantifier-free formulas is decidable (Ackermann, 1954)

• satisfiability of quantifier-free formulas is NP-complete
• satisfiability of conjunctions of literals is in O(n · log(n))

30 / 36



Equality and Uninterpreted Functions (UF)

• Σ = {=, f, g, h, . . .}
• TUF is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) ̸= f(y) ∧ z = v

• satisfiability of arbitrary formulas is undecidable
• satisfiability of quantifier-free formulas is decidable (Ackermann, 1954)
• satisfiability of quantifier-free formulas is NP-complete

• satisfiability of conjunctions of literals is in O(n · log(n))

30 / 36



Equality and Uninterpreted Functions (UF)

• Σ = {=, f, g, h, . . .}
• TUF is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) ̸= f(y) ∧ z = v

• satisfiability of arbitrary formulas is undecidable
• satisfiability of quantifier-free formulas is decidable (Ackermann, 1954)
• satisfiability of quantifier-free formulas is NP-complete
• satisfiability of conjunctions of literals is in O(n · log(n))

30 / 36



More theories

• theory of strings (s1 ++ s2, len(s), substr(s, from, to), contains(s1, s2), . . .)

• theory of lists,
• theory of floating point numbers (IEEE-754),
• theory of recursive data structures,
• theory of groups,
• …
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Standard view of theories



Theory: Standard Definitions

Definition
A (Σ-)theory is a set of closed Σ-formulas.

Definition
A formula φ is satisfiable modulo theory T if there is a Σ-interpretation I such
that

• I |= φ and
• I |= ψ for all ψ ∈ T

32 / 36



Two views of theories

Linear Natural Arithmetic

• Σ = {0, 1,+,=,≤}

SMT definition

• T = {(N, (_)N)}, where (_)N is the obvious standard interpretation

Standard definition (Presburger axioms)
T = {∀x. ¬(0 = x+ 1),

∀x∀y. x+ 1 = y + 1→ x = y,

∀x. x+ 0 = x,

∀x∀y. x+ (y + 1) = (x+ y) + 1} ∪
{(P (0) ∧ ∀x(P (x) → P (x+ 1))) → ∀yP (y) | P is a formula with free variable x}
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Two views of theories

More examples

• The theory of uninterpreted functions with equality is TUF =

∅

• The axioms of theory of arrays (McCarthy):

TA = { ∀a, i, j. (i = j → read(a, i) = read(a, j)),

∀a, v, i, j. (i = j → read(write(a, i, v), j) = v),

∀a, v, i, j. (i ̸= j → read(write(a, i, v), j) = read(a, j))}
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Two views of theories

These two views are equivalent

• set of Σ-structures⇒ the set of formulas that are true in all these structures
• set of axioms⇒ the set of Σ-structures that satisfy all the axioms

Sometimes, one view is better

• A set of structures satisfying axioms of Peano arithmetic is not easily
describable.

• A set of axioms for NRA is infinite and complicated.
• A set of axioms for NIA is not recursive. (, 1931)
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Next time

• algorithms solving SMT
• CDCL(T) algorithm
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