Introduction to First-Order Satisfiability

IA085: Satisfiability and Automated Reasoning

Martin Jonáš

FI MUNI, Spring 2024

Satisfiability modulo theories (SMT)

- $\cdot \ x = 1 \ \land \ x = y + y \ \land \ y > 0$
- is it satisfiable over reals?
- is it satisfiable over integers?
- is it satisfiable over integers represented by 8 bits?
- is it satisfiable over floating point numbers represented by 32 bits?

For next four lectures, we will be dealing mostly with quantifier-free formulas.

SMT solvers are widely used in practice

- planning
- scheduling
- verification of hardware
- compiler optimizations
- verification of software
- . . .

Applications

```
1 int x = read();
2 int y = read();
3 int z = read();
4 if (x > 10 && y != 0)
5 {
6 print(z / (x + y));
7 }
```

Contains division by zero precisely if the formula

$$x > 10 \land \neg(y = 0) \land x + y = 0$$

is satisfiable.

First-order logic

- $\cdot\,$ are true or false
- have no internal structure

First-order logic speaks about objects, their properties and relations among them.

- $\cdot\,$ are true or false
- have no internal structure

First-order logic speaks about objects, their properties and relations among them. Examples

- $\exists s. \operatorname{Human}(s) \land \operatorname{Mortal}(s).$
- $\cdot \forall s. \operatorname{Human}(s) \rightarrow \operatorname{Mortal}(s).$
- $\cdot \ \exists x \exists y. \, x < 5 \ \land \ y < 3 \ \land \ 2 \cdot (x+y) > 20.$

- $\cdot\,$ are true or false
- have no internal structure

First-order logic speaks about objects, their properties and relations among them. Examples

- $\exists s. \operatorname{Human}(s) \land \operatorname{Mortal}(s).$
- $\cdot \forall s. \operatorname{Human}(s) \rightarrow \operatorname{Mortal}(s).$
- $\cdot \ \exists x \exists y. \, x < 5 \ \land \ y < 3 \ \land \ 2 \cdot (x+y) > 20.$

- $\cdot\,$ are true or false
- have no internal structure

First-order logic speaks about objects, their properties and relations among them. Examples

- $\exists s. \operatorname{Human}(s) \land \operatorname{Mortal}(s).$
- $\cdot \forall s. \operatorname{Human}(s) \rightarrow \operatorname{Mortal}(s).$
- $\cdot \exists x \exists y. x < 5 \land y < 3 \land 2 \cdot (x+y) > 20.$

In addition to logical symbols, first-order formulas contain variables, constant symbols, function symbols, and predicate symbols.

Suppose we have

- · a set $\Sigma^F = \{f, g, \ldots\}$ of function symbols and
- a set $\Sigma^P = \{R, S, \ldots\}$ of predicate symbols.

Each function symbol f and predicate symbol P has its arity ar(f) and ar(P). Function symbols of arity 0 are called constants.

The set $\Sigma = \Sigma^F \cup \Sigma^P$ is called a signature.

Example

- $\boldsymbol{\cdot} \ \boldsymbol{\Sigma}^F = \{+,-,\mathbf{0},\mathbf{1}\}$
- $\boldsymbol{\cdot} \ \boldsymbol{\Sigma}^P = \{=,\leq\}$

First-Order Logic – Syntax

(Σ -)Term

- 1. a variable x, y, z, \ldots
- 2. a function symbol applied to ar(f) terms f(x), g(f(x), y), ...

First-Order Logic – Syntax

(Σ -)Term

- 1. a variable x, y, z, \ldots
- 2. a function symbol applied to $\operatorname{ar}(f)$ terms f(x), g(f(x), y), ...

 $(\Sigma)\text{-}\mathsf{Literal}$

- 1. a predicate symbol applied to $\operatorname{ar}(P)$ terms $R(x), S(f(x), y), \ldots$
- 2. a negation of predicate symbol applied to $\operatorname{ar}(P)$ terms –

 $\neg R(x), \neg S(f(x), y), \ldots$

First-Order Logic – Syntax

(Σ -)Term

- 1. a variable x, y, z, \ldots
- 2. a function symbol applied to $\operatorname{ar}(f)$ terms f(x), g(f(x), y), ...

 $(\Sigma)\text{-}\mathsf{Literal}$

- 1. a predicate symbol applied to $\operatorname{ar}(P)$ terms $R(x), S(f(x), y), \ldots$
- 2. a negation of predicate symbol applied to $\operatorname{ar}(P)$ terms $\neg R(x), \neg S(f(x), y), \ldots$

(Σ) -Formula

- 1. a Boolean combination of literals $(R(x) \vee \neg R(y)) \wedge S(f(x), y), \ldots$
- 2. a quantifier applied to a formula $\forall x (R(x)), \ldots$

First-Order Logic - Syntactic Conventions and Terminology

Notation

- instead of +(r,s) write r + s (also for other infix function symbols)
- instead of $\leq (r, s)$ write $r \leq s$ (also for other infix predicate symbols)
- \cdot instead of 1() write 1 (also for other constants)
- instead of $\forall x \forall y (\varphi \land \psi)$ write $\forall x \forall y. \varphi \land \psi$

Terminology

- an occurrence of a variable is free if it is not bound by a quantifier
- a formula without free occurrences of variables is closed or a sentence

Is the following formula true?

 $\forall x \exists y. \, x < y \ \land \ y < x + 1$

Is the following formula true?

 $\forall x \exists y. \, x < y \ \land \ y < x + 1$

It depends.

Is the following formula true?

 $\forall x \exists y. \, x < y \ \land \ y < x+1$

It depends.

- What is the domain of x and y?
- \cdot What does the function symbol + mean?
- What does the predicate symbol < mean?

Is the following formula true?

 $\forall x \exists y. \, x < y \ \land \ y < x+1$

It depends.

- What is the domain of x and y?
- \cdot What does the function symbol + mean?
- What does the predicate symbol < mean?

Is the following formula true?

 $\forall x \exists y. \, x < y \ \land \ y < x+1$

It depends.

- What is the domain of x and y?
- \cdot What does the function symbol + mean?
- What does the predicate symbol < mean?

Meaning of these three things is given by a Σ -structure.

Σ -structure \mathcal{A}

- $\cdot\,$ determines the set of objects and behavior of functions/predicates
- $\boldsymbol{\cdot}$ a pair of
 - 1. a non-empty set A called the universe,
 - 2. a map $(_)^{\mathcal{A}}$ that
 - to each $f \in \Sigma^F$ assigns a function $f^{\mathcal{A}} \colon A^{\operatorname{ar}(f)} \to A$,
 - · to each $R \in \Sigma^P \setminus \{=\}$ assigns a relation $R^{\mathcal{A}} \subseteq A^{\operatorname{ar}(R)}$,
 - we suppose that $=^{A}$ is the identity relation.

$$\mathcal{A} = \left(A, (_)^{\mathcal{A}}
ight)$$
 where

$$A = \mathbb{Z}$$

+ $^{\mathcal{A}}(x, y) = x + y$
 $<^{\mathcal{A}} = \{(x, y) \mid x < y\}$
 $1^{\mathcal{A}} = 1$

$$\mathcal{A} = \left(A, (_)^{\mathcal{A}}
ight)$$
 where $\mathcal{B} = \left(B, (_)^{\mathcal{B}}
ight)$ where

$$A = \mathbb{Z} \qquad B = \{\circ, \bullet\}$$
$$+^{\mathcal{A}}(x, y) = x + y \qquad +^{\mathcal{B}}(x, y) = y$$
$$<^{\mathcal{A}} = \{(x, y) \mid x < y\} \qquad <^{\mathcal{B}} = \{(\circ, \circ), (\bullet, \circ)\}$$
$$1^{\mathcal{A}} = 1 \qquad 1^{\mathcal{B}} = \bullet$$

The formulas can also contain free variables.

Valuation for a Σ -structure $\mathcal{A} = (A, (\underline{\})^{\mathcal{A}})$

- · determines the values of the variables
- a map $\mu \colon \mathit{Vars} \to A$

 $\Sigma\text{-interpretation}$

+ a pair (\mathcal{A},μ) of a $\Sigma\text{-structure}$ and a valuation

Given an interpretation $\mathcal{I} = (\mathcal{A}, \mu)$, we can evaluate

- each term t to a value $\llbracket t \rrbracket^{\mathcal{I}} \in A$
- each formula φ to a value $\llbracket \varphi \rrbracket^{\mathcal{I}} \in \{\top, \bot\}$

First-Order Logic – Evaluation

$$\mathcal{A} = \left(\mathbb{Z}, (_)^{\mathcal{A}}\right)$$
 where

$$+^{\mathcal{A}}(x, y) = x + y$$
$$<^{\mathcal{A}} = \{(x, y) \mid x < y\}$$
$$1^{\mathcal{A}} = 1$$

First-Order Logic - Evaluation

 $\mathcal{A} = \left(\mathbb{Z}, (_)^{\mathcal{A}}\right)$ where

$$+^{\mathcal{A}}(x, y) = x + y$$
$$<^{\mathcal{A}} = \{(x, y) \mid x < y\}$$
$$1^{\mathcal{A}} = 1$$

Given $\mu(x) = 1, \mu(y) = 3$: • $[y + 1]^{(A,\mu)} =$

First-Order Logic - Evaluation

 $\mathcal{A} = \left(\mathbb{Z}, (_)^{\mathcal{A}}\right)$ where

$$+^{\mathcal{A}}(x, y) = x + y$$
$$<^{\mathcal{A}} = \{(x, y) \mid x < y\}$$
$$1^{\mathcal{A}} = 1$$

- $\cdot \, \llbracket y + 1 \rrbracket^{(\mathcal{A}, \mu)} = 4$
- $\cdot \ \llbracket y + 1 < x \rrbracket^{(\mathcal{A}, \mu)} =$

First-Order Logic - Evaluation

 $\mathcal{A} = \left(\mathbb{Z}, (_)^{\mathcal{A}}\right)$ where

$$\begin{aligned} +^{\mathcal{A}}(x,y) &= x + y \\ <^{\mathcal{A}} &= \{(x,y) \mid x < y\} \\ 1^{\mathcal{A}} &= 1 \end{aligned}$$

- $\cdot \, \llbracket y + 1 \rrbracket^{(\mathcal{A}, \mu)} = 4$
- $\cdot \, \llbracket y + 1 < x \rrbracket^{(\mathcal{A}, \mu)} \, = \, \bot$
- $\cdot \ \llbracket (x < y) \land (y + 1 < x) \rrbracket^{(\mathcal{A}, \mu)} \ =$

 $\mathcal{A} = \left(\mathbb{Z}, (_)^{\mathcal{A}}\right)$ where $\mathcal{B} = \left(\{\circ, \bullet\}, (_)^{\mathcal{B}}\right)$ where

$$+^{\mathcal{A}}(x, y) = x + y$$
$$<^{\mathcal{A}} = \{(x, y) \mid x < y\}$$
$$1^{\mathcal{A}} = 1$$

$$+^{\mathcal{B}}(x,y) = y$$
$$<^{\mathcal{B}} = \{(\circ,\circ), (\bullet,\circ)$$

 $1^{\mathcal{B}} = \bullet$

- $\cdot \ \llbracket y + 1 \rrbracket^{(\mathcal{A}, \mu)} = 4$
- $\cdot \, \llbracket y + 1 < x \rrbracket^{(\mathcal{A}, \mu)} \, = \, \bot$
- $\cdot \ \llbracket (x < y) \land (y + 1 < x) \rrbracket^{(\mathcal{A}, \mu)} \ = \ \bot$

Given
$$\mu(x) = \circ, \mu(y) = \circ$$
:
 $\cdot [y + 1]^{(\mathcal{B},\mu)} =$

 $\mathcal{A} = (\mathbb{Z}, (_)^{\mathcal{A}})$ where

$$+^{\mathcal{A}}(x, y) = x + y$$
$$<^{\mathcal{A}} = \{(x, y) \mid x < y\}$$
$$1^{\mathcal{A}} = 1$$

 $\mathcal{B} = (\{\circ, \bullet\}, (_)^{\mathcal{B}})$ where

$$\begin{aligned} -\mathcal{B}(x,y) &= y \\ <^{\mathcal{B}} &= \{(\circ,\circ), (\bullet,\circ)\} \\ 1^{\mathcal{B}} &= \bullet \end{aligned}$$

- $[y+1]^{(\mathcal{A},\mu)} = 4$
- $\cdot [[y+1 < x]]^{(\mathcal{A},\mu)} = \bot$
- $[(x < y) \land (y + 1 < x)]^{(\mathcal{A},\mu)} = \bot$

Given
$$\mu(x) = \circ, \mu(y) = \circ$$
:
 $\cdot [y + 1]^{(\mathcal{B},\mu)} = \bullet$
 $\cdot [y + 1 < x]^{(\mathcal{B},\mu)} =$

 $\mathcal{A} = (\mathbb{Z}, (_)^{\mathcal{A}})$ where

$$+^{\mathcal{A}}(x, y) = x + y$$
$$<^{\mathcal{A}} = \{(x, y) \mid x < y\}$$
$$1^{\mathcal{A}} = 1$$

- $[y+1]^{(\mathcal{A},\mu)} = 4$
- $\cdot \left[y + 1 < x \right]^{(\mathcal{A},\mu)} = \bot$
- $[(x < y) \land (y + 1 < x)]^{(\mathcal{A},\mu)} = \bot$

$$\mathcal{B} = ig(\{ \circ, ullet \}, (_)^{\mathcal{B}} ig)$$
 where

$$\begin{aligned} -\mathcal{B}(x,y) &= y \\ <^{\mathcal{B}} &= \{(\circ,\circ), (\bullet,\circ)\} \\ 1^{\mathcal{B}} &= \bullet \end{aligned}$$

Given
$$\mu(x) = \circ, \mu(y) = \circ$$
:
 $\cdot [y+1]^{(\mathcal{B},\mu)} = \bullet$
 $\cdot [y+1 < x]^{(\mathcal{B},\mu)} = \top$
 $\cdot [(x < y) \land (y+1 < x)]^{(\mathcal{B},\mu)} =$

 $\mathcal{A} = (\mathbb{Z}, (_)^{\mathcal{A}})$ where

$$+^{\mathcal{A}}(x, y) = x + y$$
$$<^{\mathcal{A}} = \{(x, y) \mid x < y\}$$
$$1^{\mathcal{A}} = 1$$

- $[y+1]^{(\mathcal{A},\mu)} = 4$
- $\cdot \left[y + 1 < x \right]^{(\mathcal{A},\mu)} = \bot$
- $[(x < y) \land (y + 1 < x)]^{(\mathcal{A},\mu)} = \bot$

$$\mathcal{B} = ig(\{ \circ, ullet \}, (_)^{\mathcal{B}} ig)$$
 where

$$\mathcal{L}^{\mathcal{B}}(x,y) = y$$
$$\mathcal{L}^{\mathcal{B}} = \{(\circ, \circ), (\bullet, \circ)\}$$
$$\mathcal{L}^{\mathcal{B}} = \bullet$$

Given
$$\mu(x) = \circ, \mu(y) = \circ$$
:
 $\cdot [y + 1]^{(\mathcal{B},\mu)} = \bullet$
 $\cdot [y + 1 < x]^{(\mathcal{B},\mu)} = \top$
 $\cdot [(x < y) \land (y + 1 < x)]^{(\mathcal{B},\mu)} = \top$

Interpretation ${\mathcal I}$ satisfies formula φ

- $\cdot \ \text{if} \left[\!\left[\varphi\right]\!\right]^{\mathcal{I}} = \top$
- written $\mathcal{I} \models \varphi$

Entailment and Validity

Formula φ entails formula ψ

- + if every interpretation that satisfies φ also satisfies ψ
- written $\varphi \models \psi$
- example: $f(x) = y \land x = z \models f(z) = y$
- negative example: $x < y \not\models x + 1 < y + 1$

Formula φ is valid

- + if every interpretation satisfies φ
- \cdot written $\models \varphi$
- example: $\models P(f(x)) \lor \neg P(f(x))$
- negative example: $\not\models x + 0 = x$

Definition Formula φ is satisfiable if there is a Σ -interpretation (\mathcal{A}, μ) such that $(\mathcal{A}, \mu) \models \varphi$.

Definition Formula φ is satisfiable if there is a Σ -interpretation (\mathcal{A}, μ) such that $(\mathcal{A}, \mu) \models \varphi$.

Is formula $(x < y) \land (y + 1 < x)$ satisfiable?

Definition Formula φ is satisfiable if there is a Σ -interpretation (\mathcal{A}, μ) such that $(\mathcal{A}, \mu) \models \varphi$.

Is formula $(x < y) \land (y + 1 < x)$ satisfiable? Yes. \odot

Definition Formula φ is satisfiable if there is a Σ -interpretation (\mathcal{A}, μ) such that $(\mathcal{A}, \mu) \models \varphi$.

Is formula $(x < y) \land (y + 1 < x)$ satisfiable? Yes. \odot

Solution

Pick a subset of Σ -structures in which we are interested. This gives rise to the Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT)

Definition A (Σ -)theory is a set of Σ -structures.

Definition A formula φ is satisfiable modulo theory T if there is a Σ -interpretation (\mathcal{A}, μ) with $\mathcal{A} \in T$ such that $(\mathcal{A}, \mu) \models \varphi$.

Consider the structure ${\cal Z}$ with the universe ${\mathbb Z}$ and the standard interpretation of operations +,< , and 1.

The formula $(x < y) \land (y + 1 < x)$ is unsatisfiable modulo theory $T = \{\mathcal{Z}\}$.

The formula $(x < y) \land (y < x + 2)$ is satisfiable modulo theory $T = \{\mathcal{Z}\}$.

- $\Sigma = \{0, 1, +, -, =, \leq\}$
- T_{LIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

- $\Sigma = \{0, 1, +, -, =, \leq\}$
- T_{LIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

- $\mathcal{I} = (\mathcal{A}, \mu)$ is *T*-model of φ
 - if $\mathcal{A} \in T$ and $\llbracket \varphi \rrbracket^{\mathcal{I}} = \top$
 - written $\mathcal{I} \models_T \varphi$

Entailment and Validity

φ *T*-entails ψ

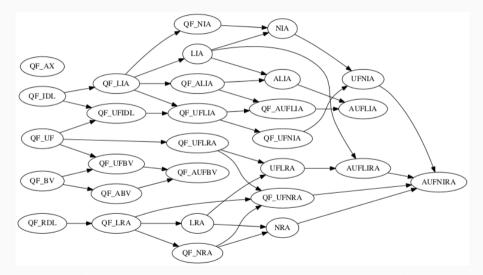
- + if every T-model of φ is also a T-model of ψ
- written $\varphi \models_T \psi$
- example: $x < y \models_{T_{\text{LIA}}} x + 1 < y + 1$

φ is *T*-valid

- + if every $\mathcal{I}=(\mathcal{A},\mu)$ with $\mathcal{A}\in T$ is a T-model of φ
- equivalently $\top \models_T \varphi$
- written $\models_T \varphi$
- example: $\models_{T_{\text{LIA}}} x + 0 = x$

Theories of interest

Logics in SMT-LIB



[https://smtlib.cs.uiowa.edu/logics.shtml]

- · $\Sigma = \{0, 1, +, -, =, \leq\}$
- T_{LIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

•
$$\Sigma = \{0, 1, +, -, =, \leq\}$$

• T_{LIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

•
$$\Sigma = \{0, 1, +, -, =, \leq\}$$

• T_{LIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

• satisfiability of arbitrary formulas is decidable

•
$$\Sigma = \{0, 1, +, -, =, \leq\}$$

• T_{LIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

- satisfiability of arbitrary formulas is decidable
- complexity of satisfiability of arbitrary formulas is in $\Omega(2^{2^n})$ (Fischer, Rabin, 1974)

- : $\boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,=,\leq\}$
- T_{LIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

- satisfiability of arbitrary formulas is decidable
- complexity of satisfiability of arbitrary formulas is in $\Omega(2^{2^n})$ (Fischer, Rabin, 1974)
- complexity of satisfiability of arbitrary formulas is in $\mathcal{O}(2^{2^{2^{kn}}})$ (Oppen, 1978)

•
$$\Sigma = \{0, 1, +, -, =, \leq\}$$

• T_{LIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

- satisfiability of arbitrary formulas is decidable
- complexity of satisfiability of arbitrary formulas is in $\Omega(2^{2^n})$ (Fischer, Rabin, 1974)
- complexity of satisfiability of arbitrary formulas is in $\mathcal{O}(2^{2^{2^{kn}}})$ (Oppen, 1978)
- satisfiability of quantifier-free formulas is NP-complete

•
$$\Sigma = \{0, 1, +, -, =, \leq\}$$

• T_{LIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

- satisfiability of arbitrary formulas is decidable
- complexity of satisfiability of arbitrary formulas is in $\Omega(2^{2^n})$ (Fischer, Rabin, 1974)
- complexity of satisfiability of arbitrary formulas is in $\mathcal{O}(2^{2^{2^{kn}}})$ (Oppen, 1978)
- satisfiability of quantifier-free formulas is NP-complete
- \cdot satisfiability of conjunctions of literals is NP-complete

- $\boldsymbol{\cdot}\ \boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,=,\leq\}$
- T_{LRA} is a set of a single structure with $A = \mathbb{Q}$ and the standard interpretation of operations

- $\boldsymbol{\cdot}\ \boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,=,\leq\}$
- T_{LRA} is a set of a single structure with $A = \mathbb{Q}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

- : $\boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,=,\leq\}$
- T_{LRA} is a set of a single structure with $A = \mathbb{Q}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

• satisfiability of arbitrary formulas is decidable

- $\boldsymbol{\cdot}\ \boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,=,\leq\}$
- T_{LRA} is a set of a single structure with $A = \mathbb{Q}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

- satisfiability of arbitrary formulas is decidable
- complexity of satisfiability of arbitrary formulas is in $\Omega(2^n)$ (Fischer, Rabin, 1974)

- $\boldsymbol{\cdot}\ \boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,=,\leq\}$
- T_{LRA} is a set of a single structure with $A = \mathbb{Q}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

- satisfiability of arbitrary formulas is decidable
- complexity of satisfiability of arbitrary formulas is in $\Omega(2^n)$ (Fischer, Rabin, 1974)
- complexity of satisfiability of arbitrary formulas is in $\mathcal{O}(2^{2^{kn}})$ (Ferrante, Rackoff, 1975)

- $\boldsymbol{\cdot}\ \boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,=,\leq\}$
- T_{LRA} is a set of a single structure with $A = \mathbb{Q}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

- satisfiability of arbitrary formulas is decidable
- complexity of satisfiability of arbitrary formulas is in $\Omega(2^n)$ (Fischer, Rabin, 1974)
- complexity of satisfiability of arbitrary formulas is in $\mathcal{O}(2^{2^{kn}})$ (Ferrante, Rackoff, 1975)
- satisfiability of quantifier-free formulas is NP-complete

- $\boldsymbol{\cdot}\ \boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,=,\leq\}$
- T_{LRA} is a set of a single structure with $A = \mathbb{Q}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x + y) \land (1 \le y)$$

- satisfiability of arbitrary formulas is decidable
- complexity of satisfiability of arbitrary formulas is in $\Omega(2^n)$ (Fischer, Rabin, 1974)
- complexity of satisfiability of arbitrary formulas is in $\mathcal{O}(2^{2^{kn}})$ (Ferrante, Rackoff, 1975)
- satisfiability of quantifier-free formulas is NP-complete
- satisfiability of conjunctions of literals in P (Khachiyan, 1979)

Theory of Non-Linear Integer Arithmetic (NIA)

- * $\boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,\cdot,=,\leq\}$
- T_{NIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

Theory of Non-Linear Integer Arithmetic (NIA)

- * $\boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,\cdot,=,\leq\}$
- T_{NIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x \cdot y) \land (1 \le y)$$

Theory of Non-Linear Integer Arithmetic (NIA)

- * $\boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,\cdot,=,\leq\}$
- T_{NIA} is a set of a single structure with $A = \mathbb{Z}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x \cdot y) \land (1 \le y)$$

• satisfiability of conjunctions of quantifier-free formulas is undecidable (Matiyasevich, 1971)

- * $\boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,\cdot,=,\leq\}$
- T_{NRA} is a set of a single structure with $A = \mathbb{R}$ and the standard interpretation of operations

- * $\boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,\cdot,=,\leq\}$
- T_{NRA} is a set of a single structure with $A = \mathbb{R}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x \cdot y) \land (1 \le y)$$

•
$$\boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,\cdot,=,\leq\}$$

• T_{NRA} is a set of a single structure with $A = \mathbb{R}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x \cdot y) \land (1 \le y)$$

• satisfiability of arbitrary formulas is decidable (Tarski, 1951)

- * $\boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,\cdot,=,\leq\}$
- T_{NRA} is a set of a single structure with $A = \mathbb{R}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x \cdot y) \land (1 \le y)$$

- satisfiability of arbitrary formulas is decidable (Tarski, 1951)
- complexity of satisfiability of arbitrary formulas is in $\mathcal{O}(2^{2^{kn}})$ (Collins, 1975)

- * $\boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,-,\cdot,=,\leq\}$
- T_{NRA} is a set of a single structure with $A = \mathbb{R}$ and the standard interpretation of operations

$$1 \le x \land (3 \le x \cdot y) \land (1 \le y)$$

- satisfiability of arbitrary formulas is decidable (Tarski, 1951)
- complexity of satisfiability of arbitrary formulas is in $\mathcal{O}(2^{2^{kn}})$ (Collins, 1975)
- complexity of satisfiability of conjunctions of literals in $\mathcal{O}(2^{2^{kn}})$

Arrays (A)

- · $\Sigma = \{\text{read}, \text{write}, =\}$
- $\cdot \,\, T_A$ is a set of structures, where A is a set of arrays and elements and
 - read(a, i) is interpreted as an element on index i of array a
 - write(a, i, v) is interpreted as an array a after replacing element on index i by v
 - equality is defined only for elements

Arrays (A)

- · $\Sigma = \{\text{read}, \text{write}, =\}$
- $\cdot \,\, T_A$ is a set of structures, where A is a set of arrays and elements and
 - read(a, i) is interpreted as an element on index i of array a
 - write(a, i, v) is interpreted as an array a after replacing element on index i by v
 - equality is defined only for elements

$$read(a, i) = u \land (read(a, i) = read(write(a, i, v), i))$$

Arrays (A)

- · $\Sigma = \{\text{read}, \text{write}, =\}$
- $\cdot \,\, T_A$ is a set of structures, where A is a set of arrays and elements and
 - read(a, i) is interpreted as an element on index i of array a
 - write(a, i, v) is interpreted as an array a after replacing element on index i by v
 - equality is defined only for elements

$$read(a, i) = u \land (read(a, i) = read(write(a, i, v), i))$$

• satisfiability of arbitrary formulas is undecidable

Arrays (A)

- · $\Sigma = \{\text{read}, \text{write}, =\}$
- $\cdot \,\, T_A$ is a set of structures, where A is a set of arrays and elements and
 - read(a, i) is interpreted as an element on index i of array a
 - write(a, i, v) is interpreted as an array a after replacing element on index i by v
 - equality is defined only for elements

$$read(a, i) = u \land (read(a, i) = read(write(a, i, v), i))$$

- satisfiability of arbitrary formulas is undecidable
- satisfiability of quantifier-free formulas is NP-complete

- · $\Sigma = \{\text{read}, \text{write}, =\}$
- \cdot T_A is a set of structures where A is a set of arrays and elements and
 - read(a, i) is interpreted as an element on index i of array a
 - write(a, i, v) is interpreted as an array a after replacing element on index i by v

- · $\Sigma = \{\text{read}, \text{write}, =\}$
- \cdot T_A is a set of structures where A is a set of arrays and elements and
 - read(a, i) is interpreted as an element on index i of array a
 - write(a, i, v) is interpreted as an array a after replacing element on index i by v

$$\operatorname{read}(a,i) = u \land (b = \operatorname{write}(a,i,v)) \land (a = b)$$

- $\Sigma = \{\text{read}, \text{write}, =\}$
- \cdot T_A is a set of structures where A is a set of arrays and elements and
 - read(a, i) is interpreted as an element on index i of array a
 - write(a, i, v) is interpreted as an array a after replacing element on index i by v

$$\operatorname{read}(a,i) = u \land (b = \operatorname{write}(a,i,v)) \land (a = b)$$

• satisfiability of arbitrary formulas is undecidable

- $\Sigma = \{\text{read}, \text{write}, =\}$
- \cdot T_A is a set of structures where A is a set of arrays and elements and
 - read(a, i) is interpreted as an element on index i of array a
 - $\operatorname{write}(a, i, v)$ is interpreted as an array a after replacing element on index i by v

$$\operatorname{read}(a,i) = u \land (b = \operatorname{write}(a,i,v)) \land (a = b)$$

- \cdot satisfiability of arbitrary formulas is undecidable
- satisfiability of quantifier-free formulas is NP-complete

- + $\Sigma = \{+_{[k]}, \times_{[k]}, \&_{[k]}, =, <^u_{[k]}, <^s_{[k]}, \mathbf{1}_{[k]}, \mathbf{2}_{[k]}\}$ and many more
- + $T_{\rm BV}$ is a set of structures where BV is a set of finite sequences of bits (bit-vectors) and
 - $+_{[k]}$ adds two sequences of k-bits representing unsigned integers and returns a sequence of k-bits
 - $1_{[k]}$ is a sequence of k-bits that represents unsigned number 1

- ...

- + $\Sigma = \{+_{[k]}, \times_{[k]}, \&_{[k]}, =, <^u_{[k]}, <^s_{[k]}, \mathbf{1}_{[k]}, \mathbf{2}_{[k]}\}$ and many more
- + $T_{\rm BV}$ is a set of structures where BV is a set of finite sequences of bits (bit-vectors) and
 - $+_{[k]}$ adds two sequences of k-bits representing unsigned integers and returns a sequence of k-bits
 - $1_{[k]}$ is a sequence of k-bits that represents unsigned number 1

- ...

$$x +_{[8]} 2_{[8]} <^{u}_{[8]} x_{[8]}$$

- + $\Sigma = \{+_{[k]}, \times_{[k]}, \&_{[k]}, =, <^u_{[k]}, <^s_{[k]}, \mathbf{1}_{[k]}, \mathbf{2}_{[k]}\}$ and many more
- + $T_{\rm BV}$ is a set of structures where BV is a set of finite sequences of bits (bit-vectors) and
 - $+_{[k]}$ adds two sequences of k-bits representing unsigned integers and returns a sequence of k-bits
 - $1_{[k]}$ is a sequence of k-bits that represents unsigned number 1

- ...

$$x +_{[8]} 2_{[8]} <^{u}_{[8]} x_{[8]}$$

• satisfiability of arbitrary formulas is **PSPACE**-complete

- + $\Sigma = \{+_{[k]}, \times_{[k]}, \&_{[k]}, =, <^u_{[k]}, <^s_{[k]}, \mathbf{1}_{[k]}, \mathbf{2}_{[k]}\}$ and many more
- + $T_{\rm BV}$ is a set of structures where BV is a set of finite sequences of bits (bit-vectors) and
 - $+_{[k]}$ adds two sequences of k-bits representing unsigned integers and returns a sequence of k-bits
 - $1_{[k]}$ is a sequence of k-bits that represents unsigned number 1

- ...

$$x +_{[8]} 2_{[8]} <^{u}_{[8]} x_{[8]}$$

- satisfiability of arbitrary formulas is **PSPACE**-complete
- satisfiability of quantifier-free formulas is NP-complete

- $\boldsymbol{\cdot}\ \boldsymbol{\Sigma} = \{=, f, g, h, \ldots\}$
- $T_{\rm UF}$ is a set of all Σ -structures

- $\boldsymbol{\cdot} \ \boldsymbol{\Sigma} = \{=, f, g, h, \ldots\}$
- $T_{\rm UF}$ is a set of all Σ -structures

$$x = v \land y = g(z) \land f(g(x)) \neq f(y) \land z = v$$

- $\boldsymbol{\cdot} \ \boldsymbol{\Sigma} = \{=, f, g, h, \ldots\}$
- $T_{\rm UF}$ is a set of all Σ -structures

$$x = v \land y = g(z) \land f(g(x)) \neq f(y) \land z = v$$

• satisfiability of arbitrary formulas is undecidable

- $\boldsymbol{\cdot} \ \boldsymbol{\Sigma} = \{=, f, g, h, \ldots\}$
- $T_{\rm UF}$ is a set of all Σ -structures

$$x = v \land y = g(z) \land f(g(x)) \neq f(y) \land z = v$$

- satisfiability of arbitrary formulas is undecidable
- satisfiability of quantifier-free formulas is decidable (Ackermann, 1954)

- $\boldsymbol{\cdot} \ \boldsymbol{\Sigma} = \{=, f, g, h, \ldots\}$
- $T_{\rm UF}$ is a set of all Σ -structures

$$x = v \land y = g(z) \land f(g(x)) \neq f(y) \land z = v$$

- satisfiability of arbitrary formulas is undecidable
- satisfiability of quantifier-free formulas is decidable (Ackermann, 1954)
- satisfiability of quantifier-free formulas is NP-complete

- $\boldsymbol{\cdot} \ \boldsymbol{\Sigma} = \{=, f, g, h, \ldots\}$
- $T_{\rm UF}$ is a set of all Σ -structures

$$x = v \land y = g(z) \land f(g(x)) \neq f(y) \land z = v$$

- satisfiability of arbitrary formulas is undecidable
- satisfiability of quantifier-free formulas is decidable (Ackermann, 1954)
- satisfiability of quantifier-free formulas is NP-complete
- · satisfiability of conjunctions of literals is in $\mathcal{O}(n \cdot \log(n))$

• theory of strings $(s_1 + s_2, \text{len}(s), \text{substr}(s, from, to), \text{contains}(s_1, s_2), \ldots)$

- theory of strings $(s_1 + s_2, \text{len}(s), \text{substr}(s, from, to), \text{contains}(s_1, s_2), \ldots)$
- theory of lists,

- theory of strings $(s_1 + s_2, \text{len}(s), \text{substr}(s, from, to), \text{contains}(s_1, s_2), \ldots)$
- \cdot theory of lists,
- theory of floating point numbers (IEEE-754),

- theory of strings $(s_1 + s_2, \text{len}(s), \text{substr}(s, from, to), \text{contains}(s_1, s_2), \ldots)$
- theory of lists,
- theory of floating point numbers (IEEE-754),
- \cdot theory of recursive data structures,

- theory of strings $(s_1 + s_2, \text{len}(s), \text{substr}(s, from, to), \text{contains}(s_1, s_2), \ldots)$
- theory of lists,
- theory of floating point numbers (IEEE-754),
- \cdot theory of recursive data structures,
- theory of groups,

- theory of strings $(s_1 + s_2, \text{len}(s), \text{substr}(s, from, to), \text{contains}(s_1, s_2), \ldots)$
- theory of lists,
- theory of floating point numbers (IEEE-754),
- \cdot theory of recursive data structures,
- theory of groups,

• ...

Standard view of theories

Definition A (Σ -)theory is a set of closed Σ -formulas.

Definition

A formula φ is satisfiable modulo theory T if there is a $\Sigma\text{-interpretation}\,\mathcal{I}$ such that

- $\cdot \ \mathcal{I} \models \varphi \text{ and }$
- $\boldsymbol{\cdot} \ \mathcal{I} \models \psi \text{ for all } \psi \in T$

Linear Natural Arithmetic

 $\boldsymbol{\cdot} \ \boldsymbol{\Sigma} = \{\mathbf{0},\mathbf{1},+,=,\leq\}$

SMT definition

• $T = \{(\mathbb{N}, (_)^{\mathbb{N}})\}$, where $(_)^{\mathbb{N}}$ is the obvious standard interpretation

Standard definition (Presburger axioms)

$$\begin{split} T &= \{ \forall x. \ \neg(0 = x + 1), \\ &\forall x \forall y. \ x + 1 = y + 1 \rightarrow x = y, \\ &\forall x. \ x + 0 = x, \\ &\forall x \forall y. \ x + (y + 1) = (x + y) + 1 \} \cup \\ &\{ (P(0) \land \forall x (P(x) \rightarrow P(x + 1))) \rightarrow \forall y P(y) \mid P \text{ is a formula with free variable } x \} \end{split}$$

 \cdot The theory of uninterpreted functions with equality is $T_{
m UF} =$

 \cdot The theory of uninterpreted functions with equality is $T_{
m UF} =$

 \cdot The theory of uninterpreted functions with equality is $T_{
m UF}=\emptyset$

- \cdot The theory of uninterpreted functions with equality is $T_{
 m UF}=\emptyset$
- The axioms of theory of arrays (McCarthy):

$$T_{A} = \{ \forall a, i, j. (i = j \rightarrow \operatorname{read}(a, i) = \operatorname{read}(a, j)), \\ \forall a, v, i, j. (i = j \rightarrow \operatorname{read}(\operatorname{write}(a, i, v), j) = v), \\ \forall a, v, i, j. (i \neq j \rightarrow \operatorname{read}(\operatorname{write}(a, i, v), j) = \operatorname{read}(a, j)) \}$$

· set of Σ -structures \Rightarrow the set of formulas that are true in all these structures

- · set of Σ -structures \Rightarrow the set of formulas that are true in all these structures
- $\cdot \,$ set of axioms \Rightarrow the set of $\Sigma\text{-structures}$ that satisfy all the axioms

- · set of Σ -structures \Rightarrow the set of formulas that are true in all these structures
- $\cdot \,$ set of axioms \Rightarrow the set of $\Sigma\text{-structures}$ that satisfy all the axioms

- set of Σ -structures \Rightarrow the set of formulas that are true in all these structures
- $\cdot \,$ set of axioms \Rightarrow the set of $\Sigma\text{-structures}$ that satisfy all the axioms

Sometimes, one view is better

• A set of structures satisfying axioms of Peano arithmetic is not easily describable.

- set of Σ -structures \Rightarrow the set of formulas that are true in all these structures
- $\cdot \,$ set of axioms \Rightarrow the set of $\Sigma\text{-structures}$ that satisfy all the axioms

- A set of structures satisfying axioms of Peano arithmetic is not easily describable.
- $\cdot\,$ A set of axioms for NRA is infinite and complicated.

- set of Σ -structures \Rightarrow the set of formulas that are true in all these structures
- $\cdot \,$ set of axioms \Rightarrow the set of $\Sigma\text{-structures}$ that satisfy all the axioms

- A set of structures satisfying axioms of Peano arithmetic is not easily describable.
- $\cdot\,$ A set of axioms for NRA is infinite and complicated.
- A set of axioms for NIA is not recursive.

- set of Σ -structures \Rightarrow the set of formulas that are true in all these structures
- $\cdot \,$ set of axioms \Rightarrow the set of $\Sigma\text{-structures}$ that satisfy all the axioms

- A set of structures satisfying axioms of Peano arithmetic is not easily describable.
- $\cdot\,$ A set of axioms for NRA is infinite and complicated.
- A set of axioms for NIA is not recursive.

- set of Σ -structures \Rightarrow the set of formulas that are true in all these structures
- $\cdot \,$ set of axioms \Rightarrow the set of $\Sigma\text{-structures}$ that satisfy all the axioms

- A set of structures satisfying axioms of Peano arithmetic is not easily describable.
- $\cdot\,$ A set of axioms for NRA is infinite and complicated.
- A set of axioms for NIA is not recursive. (, 1931)

- set of Σ -structures \Rightarrow the set of formulas that are true in all these structures
- $\cdot \,$ set of axioms \Rightarrow the set of $\Sigma\text{-structures}$ that satisfy all the axioms

- A set of structures satisfying axioms of Peano arithmetic is not easily describable.
- $\cdot\,$ A set of axioms for NRA is infinite and complicated.
- A set of axioms for NIA is not recursive. (Gödel, 1931)

- \cdot algorithms solving SMT
- CDCL(T) algorithm