Algorithms for Satisfiability Modulo Theories
IA085: Satisfiability and Automated Reasoning

Martin Jonas

FI MUNI, Spring 2024

- overview of basic notions of first-order logic and satisfiabilty modulo theories

- overview of practically used theories

1/29

Terminology

« T-valid formula =
- T-satisfiable formula = formula

2/29

Solving Satisfiability Modulo Theories

Two approaches

encode the input smT formula into an equisatisfiable SAT formula
and use a SAT solver

try checking individual assignments to the input smMT
formula one by one

3/29

Eager algorithms

Eager algorithms

Encode the input smT formula into an equisatisfiable SAT formula and use a SAT
solver.

Small-domain encoding

- prove a result “if ¢ has a model, it has a model of size at most k = f(|¢|)”
- express the set {1,...,k} and all the operations by a SAT formula
- example: equality (f = linear), linear arithmetic (f = exponential)

Encoding of axioms

- Instantiate all the necessary axioms of the theory and add them to the
formula
4/29

Encoding axioms: Theory of Equality

a=b A (b=cVb#d) Na#c ANb=d

eqiapy N (edpper V me0pay) N T€lacr N €dppay
where

"€y, are Boolean variables and
* eqq,,y and eqq, ,y are the same variable.

5/29

Encoding axioms: Theory of Equality

a=b A (b=cVb#d) Na#c ANb=d

eqiapy N (edpper V me0pay) N T€lacr N €dppay
where

"€y, are Boolean variables and
* eqq,,y and eqq, ,y are the same variable.

Are we done?

5/29

Encoding axioms: Theory of Equality

a=b A (b=cVb#d) Na#c ANb=d
eqiapy N (edpper V me0pay) N T€lacr N €dppay
where
* eqys,) are Boolean variables and
* €qizyy ANd eqy, .y are the same variable.

Are we done?

Add transitivity and reflexivity

- for each added eqy, ,y and eqy, .3, add conjunct (eqg, 3 A €qgy .3) — €4z 2

- replace each added eqy,) by T 5/29

Encoding axioms: Theory of Equality and Uninterpreted Functions

z=v Ay=g(z) N flg@)#fly) N z2=v
T=0 N Y=1e540) N\ Te€Sf(g(x)) #* resfuy N Z=0
where res ¢,y and res ;) are new variables

Are we done?

6/29

Encoding axioms: Theory of Equality and Uninterpreted Functions

z=v Ay=g(z) N flg@)#fly) N z2=v
T=0 N Y=1e540) N\ Te€Sf(g(x)) #* resfuy N Z=0
where res ¢,y and res ;) are new variables

Are we done?

Add congruences

- for each added resy(,) and res), add conjunct
(t1 = tz) — (7”€8f(t1) = 7”€5f(t2))

- similarly for functions of higher arity:
(t1 =t2 A 81 = 52) = (TeSp(1y,61) = T€Sh(ty,s,))

- repeat until fixed point

6/29

Encoding axioms: Theory of Equality and Uninterpreted Functions

The above procedure

- removes uninterpreted functions by adding new variables and congruences
- reduction of UF to the theory of equality

- known as

7129

Eager algorithms

- usually poor performance, interesting only theoretically
- nowadays almost never used in practice

- one exception: (next time)

8/29

Lazy algorithms

Lazy algorithms

sMmT formula = Boolean structure + theory literals

Combine

- SAT solver to perform the Boolean search

- Theory solver (T-solver) to check satisfiability of

In the rest of the lecture for the theory T

9/29

Lazy algorithms

Note

- all following examples use the LRA theory

- because the structure is fixed, instead of (A, u) = ¢, write only u |= ¢ (and
similar)

10/29

Propositional abstraction

Propositional abstraction

- replace each atomic subformula « in the formula ¢ by a new Boolean
variable

- resulting formula ¢”
- denote the mapping by two functions 728 and B2T

Example
¢ = =1 AN (y<3Vaty=4 A (0(y<3)V z+y=10)
ef = AA(AV A3 A (mArV Ay

where T2B(z = 1) = Ay and B2T (—4;) = ~(y < 3)

1/29

Propositional abstraction

Theorem
If the propositional abstraction o is unsatisfiable, the original formula ¢ is
T-unsatisfiable.

Proof.
If 11 is @ T-model of the original formula ¢, then u? defined by
w(A;) = [B2T (A;)]" is a propositional model of . O

The converse

12/29

Propositional abstraction

Fach propositional assignment u of ¢ corresponds to a conjunction of T-literals

ul = N\ B2T(v)A A -B2T (v)
ve Vars,u(v)=T ve Vars,p(v)=_L
Example
For
¢ = =1 AN (y<3Vaezt+y=4 AN (-(y<3) V xz+y=10)
oF = A A(A3V A3) A (=AY AL)

and (A1) = T, pu(4)) = L, u(A3) =T

13/29

Offline Lazy SMT solving - schema

2
T
CDCL solver T-solver
h SAT/UNSAT
SAT/UNSAT

14 /29

Offline Lazy SMT solving - algorithm

offline_smt (formula ¢):

1

2 of « T2B(p)

3 while check_sat (o) == SAT {

4 pu = get_model (o)

5 if check_theory(u’) == SAT {
6 return SAT

7 } else {

8 <pP — goP/\ﬂ,u

9 }

10 }
1 return UNSAT

15/29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

B2T(A1) =z=1, BZT(Az) =y <3 B2T(A3) =y >5,
BZT(AL,) =x4+y==a4, BZT(A5) =y=206
SOP - {{A1}7
{A27A3}7
{A4>A5}

16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

B2T(A1) =z=1, BZT(Az) =y <3 B2T(A3) =y >5,
BZT(AL,) =x4+y==a4, BZT(A5) =y=206
SOP - {{A1}7
{A27A3}7
{A4>A5}

16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

B2T(A) =z =1, B2T(A;) =y < 3, B2T(A3) =y > 5,
B2T (Ay) =z +y =4, B2T (As) =y =6
p = {A1, Ay, ~ A3, Ay, - As
SOP = {{A‘I}v P _{ — } = =
po =z ="1Ay < 3A=(y > 5)Az+y = 4A—(y = 6)
{42, Az},
{A4>A5}

16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

BT (A) =z =1, B2T(Ay) =y <3, B2T(A3) =y > 5,
B2T(Ay) =z 4y =4, B2T(As) =y =6
oF = ({41}, v M
pf =z =1Ay <3A=(y > 5)Az+y = 4A-(y = 6)
{42, A3}, T-unsatisfiable ®
{A4>A5}

16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

BT (A) =z =1, B2T(Ay) =y <3, B2T(A3) =y > 5,
B2T(Ay) =z 4y =4, B2T(As) =y =6
oF = ({41}, v M
pf =z =1Ay <3A=(y > 5)Az+y = 4A-(y = 6)
{42, A3}, T-unsatisfiable ®
{A4>A5}

{—Aq,4;, A3, ~ A4, As}

16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

B2T(A1) =z=1, BZT(Az) =y <3 B2T(A3) =y >5,
BZT(AL,) =x4+y==a4, BZT(A5) =y=206
p={A1, Az, A3, Ay, As
oF = ({4, ot ' o
pw =xz=1ANy<3A=(y>5ANz+y=4Ay=2=6
{A27A3}7
{A4>A5}

{—Aq,4;, A3, ~ A4, As}

16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

BT (Ar) =2 =1, B2T (42) =y <3, B2T(4s3) =y > 5,
B2T (As) =z +y = 4, B2T (As) =y =6
H= {A1,A27_‘A37A47A5}
@P—{{f‘h}v MP:gg:1/\y<3/\—|(y>5)/\a:+y:4/\y:6
{4, A3}, T-unsatisfiable ®
{As, As}

{—Aq,4;, A3, ~ A4, As}

16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

BT (Ar) =2 =1, B2T (42) =y <3, B2T(4s3) =y > 5,
B2T (As) =z +y = 4, B2T (As) =y =6
H= {A1,A27_‘A37A47A5}
@P—{{f‘h}v MP:gg:1/\y<3/\—|(y>5)/\a:+y:4/\y:6
{4, A3}, T-unsatisfiable ®
{As, As}

{—Aq,4;, A3, ~ A4, As}
{—41,7Ay, A3, - A4, 0 As}

16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

B2T(A1) ==, BZT(Az) =y <3 B2T(A3) =y >5,
BZT(AL,) =x4+y==a4, BZT(A5) =y=206
p={A1, Ay, A3, ~ Ay, As
oF = ({4, = . o
po =z ="1Ay < 3A=(y > 5)A-(z+y = 4)Ay =6
{A27A3}7
{A4>A5}

{—Aq,4;, A3, ~ A4, As}
{—41,7Ay, A3, - A4, 0 As}

16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

BaT(A) =& = 1, B2T(A;) =y < 3, B2T(A3) =y > 5,
B2T(Ay) =z 4y =4, B2T(As) =y =6
o = {{4}, Mp:_{ Ah_AZﬁA%ﬁAMAE)} - -
pf =2 = 1Ay < 3A=(y > 5)A-(z+y = 4)Ay = 6
{42, Az}, T-unsatisfiable ®
{A4>A5}

{—Aq,4;, A3, ~ A4, As}
{—41,7Ay, A3, - A4, 0 As}

16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

BaT(A) =& = 1, B2T(A;) =y < 3, B2T(A3) =y > 5,
B2T(Ay) =z 4y =4, B2T(As) =y =6
o = {{4}, Mp:_{ Ah_AZﬁA%ﬁAMAE)} - -
pf =2 =1Ay < 3A=(y > 5)A-(z+y = 4)Ay = 6
{42, Az}, T-unsatisfiable ®
{A4>A5}

{—Aq,4;, A3, ~ A4, As}
{—41,7Ay, A3, - A4, 0 As}

{—A1, 1Ay, A3, Ay, ~As}
16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

B2T(A1) ==, BZT(Az) =y <3 B2T(A3) =y >5,
BZT(AL,) =x4+y==a4, BZT(A5) =y=206
p = {Ar, Az, A3, ~ Ay, As
oF = ({4, = . o
pt =x=1A-(y <3)Ay > 5A=(z+y =4)A\y =6
{A27A3}7
{A4>A5}

{—Aq,4;, A3, ~ A4, As}
{—41,7Ay, A3, - A4, 0 As}

{—A1, 1Ay, A3, Ay, ~As}
16 /29

Offline Lazy SMT solving - example

o = =1 AN (y<3Vy>5 A (z4+y=4V y=56)

BaT(A) =& = 1, B2T(Ay) =y <3, B2T(A3) =y > 5,
B2T (Ay) =z +y =4, B2T(As) =y =6
o = {{A}, p A A e) AV
pt =x=1A-(y <3)Ay > 5A=(z+y =4)A\y =6
{4, A3}, T-satisfiable @
{A4, As}

{—Aq,4;, A3, ~ A4, As}
{—41,7Ay, A3, - A4, 0 As}

{—A41,-Ay, A3, Ay, ~As}}
16 /29

Offline Lazy SMT solving

Downsides

- the SAT solver is executed from scratch every time
- propositional models are blocked one at time

- theory reasoning is applied only for complete assignments

17 /29

CDCL(T)

- tight integration of a cbcL-based SAT solver and a theory solver

- theory solver can explain conflicts and guide the search of the sAT solver
- basis of most of modern smT solvers (CVC5, MathSAT, Yices, 73, ...)

18 /29

CDCL(T) - schema

assigned variable
backtracked variable

cbcL solver

Ty

|

SAT/UNSAT

T-solver

_/

T-conflict

19/29

Conflict Explanation

- if the T-solver detects a conflict in the Boolean assignment u = {l4,..., I}, it
can compute its subset p/ C psuch that p/ Ep L

- instead of learning Vi¢, I, the SAT solver can learn V¢l

20 /29

Conflict Explanation: Example

BZT(A1) = 0B = 1, BZT(AQ) =y < 3, B2T<A3) =y > 5,
B2T (Ay) = x +y = 4, B2T (As) =y =6
o" = {{4},
{A27A3}7
{A4, As}

21/29

Conflict Explanation: Example

BZT(A1) = 0B = 1, BZT(AQ) =y < 3, B2T<A3) =y > 5,
B2T (Ay) = x +y = 4, B2T (As) =y =6
o" = {{4},
{A27A3}7
{A4, As}

21/29

Conflict Explanation: Example

BZT(A1) = 0B = 1, BZT(AQ) =y < 3, B2T<A3) =y > 5,
B2T (Ay) =z +y = 4, B2T (As) =y =6
p={Aq, Ay, ~A3, Ay, 45
o = ({41}, = e oo
uo =z ="1Ay < 3A=(y > S5)Az+y = 4A—(y = 6)
{A27A3}7
{A47A5}

21/29

Conflict Explanation: Example

B2T (A7)
B2T (As)

=

r+y

o" = {{4},
{A27A3}7
{As, As}

BZT(AQ) =y <3 B2T<A3) =y >5,
BZT(A5) S S 6

p={Ar, Ay, ~ A3, Ay, - As}

pf =2 =17y <3A=(y > 5)Az+y = 4A~(y = 6)
T-unsatisfiable ®

reason {4, Ay, Ay}

21/29

Conflict Explanation: Example

BT (A) =z =1, B2T(A;) =y <3, B2T(4s) =y > 5,
B2T (Ay) =z +y =4, B2T(As) =y =6
u= {A1, Ay, —Asz, Ay, _‘A5}
o" = {{4}, WP =2 = 1Ay < 3A(y > 5)Az+y = 4A-(y = 6)
{42, A3}, T-unsatisfiable @
{A4, As} reason {As, A, Ay}

{—41,-A4;, A4}

21/29

Conflict Explanation: Example

BZT(A1) = 0B = 1, BZT(AQ) =y < 3, B2T<A3) =y > 5,
B2T (Ay) =z +y = 4, B2T (As) =y =6
p = {Aq, Ay, ~ A3, A4, As
o = {{r}, o e J o
p =z ="1Ay < 3A=(y > 5)A~(z+y = 4)Ay =6
{A27A3}7
{A47A5}

{—41,-A4;, A4}

21/29

Conflict Explanation: Example

BT (A) =z =1, B2T(A;) =y <3, B2T(4s) =y > 5,
B2T (Ay) =z +y =4, B2T(As) =y =6
u= {A1,A27_‘A37ﬁA4aA5}
o = {41}, uP =z = 1Ay < 3A-(y > 5)A—(z+y = 4)Ay = 6
{42, A3}, T-unsatisfiable @
{A4, As} reason {4, As}

{—41,-A4;, A4}

21/29

Conflict Explanation: Example

B2T (Ay) =z =1, B2T(4;) =y <3, B2T(43) =y > 5,
B2T (Ay) =z +y = 4, B2T(As) =y =56
={A4, Ay, ~A3,~A4, A

o = {41}, ZP :{ajz 12/\y <33/\;Ey >5}5)Aﬂ(w+y =AYy =6
{42, A3}, T-unsatisfiable @
{A4, As} reason {4, As}
{—Aq,~4;, AL}
{—42, 45}

21/29

Conflict Explanation: Example

BZT(A1) = 0B = 1, BZT(AQ) =y < 3, B2T<A3) =y > 5,
B2T (Ay) =z +y = 4, B2T (45) =y =16
p = {Ar, Az, A3, ~ Ay, As
oF = {{A}, =) o
po =z ="1A=(y < 3)Ay > 5A~(z+y = 4)Ay =6
{A27A3}7
{A47A5}
{—41,-A4;, A4}
{—A4;,-As}

21/29

Conflict Explanation: Example

BZT(A1) ==, BZT(AQ) =y <3, B2T<A3) =y >5,
B2T (Ay) = x +y = 4, B2T (As) =y =6

p={A1,~Ay, A3, ~ A4, As}

o" = {{4}, pf =2 =1A=(y < 3)Ay > 5A—(z+y = 4)Ay =6
{42, 43}, T-satisfiable ®
{44, As}
{-A1, 42, - AL}
{—4;,7As}}

21/29

Theory propagation

- SAT solver notifies the T-solver about all variable assignments/backtracking
- T-solver knows the currently assigned literals p”

- T-solver can detect T-entailed literals u* =1 [and them

For the backtracking

- T-solver must be able to provide of the propagations

- for each T-propagated literal u* |= 1, an explanation x/ € u” such that
pErl

22/29

Theory propagation: Example

BT (A) =2 =1, B2T(4;) =y < 3, B2T (As) =y > 5,
B2T(Ay) =z +y =14, B2T (As) = y =
o = {{41}, SAT solver trail

{A27A3}>

{As4, As}

T-solver assignment

23/29

Theory propagation: Example

BT (A) =z =1, B2T(4;) =y <3, B2T(As) =y > 5,
B2T (Ay) =x +y =4, B2T (As) =y =
o = {{41}, SAT solver trail

{4z, 43}, 4

{As4, As}

T-solver assignment

r="1

23/29

Theory propagation: Example

B2T (A) =2z =1, B2T (Ay) =y < 3, B2T (As) =y > 5,
B2T (Ay) =x +y =4, B2T (As) =y =
o = {{41}, SAT solver trail
{4y, A3}, AP, Ad
{As, As} T-solver assignment
7B =
} y<3

23/29

Theory propagation: Example

B2T (A) =2z =1, B2T (Ay) =y < 3, B2T (As) =y > 5,
B2T (Ay) =x +y =4, B2T (As) =y =
o = {{41}, SAT solver trail
{A27 A3}> Aglllp ' Ag 4 —|A§p
{As, As} T-solver assignment
7B =
} y<3
~(y >5)

23/29

Theory propagation: Example

BT (A) =2 =1, BT (Ay) =y <3, B2T(As) =y > 5,
B2T (As) = x4y = 4, B2T (As) =y =
o = {{41}, SAT solver trail
{A27 A3}> A}IJ«P ' Ag ' _'Agp ’ _‘Azp
{As, 45} T-solver assignment
=1
} y <3
=(y > 5)
—(z+y=4)

23/29

Theory propagation: Example

B2T (A) =z =1, B2T (Ay) =y < 3, B2T (A3) =y > 5,
of = {{A41}, SAT solver trail
{A27A3}, A}Ilp,Ag,—!Aépy—\Azp’_‘Agp
{4s, 4s} T-solver assignment
7B =
} y <3
~(y >5)
—(x 4y =4)

ﬁ(y - 6) 23/29

Theory propagation: Example

B2T (A1) =z =1, BT (4y) =y <3, B2T(A3) =y > 5,
of = {{A41}, SAT solver trail
{42, 45}, AP AG, AT AP AP
Ay, A _
{As, As} T-solver assignment
=1
} y <3
~(y >5)
—(x 4y =4)

ﬁ(y - 6) 23/29

Theory propagation: Example

B2T(Ay) =z =1, B2T (Ay) =y < 3, B2T (A3) =y > 5,
B2T (Ay) =z +y =4, B2T (As) =y =
of = {{A41}, SAT solver trail
{A27A3}, A}Ilp,Ag,—!Aépy—\Azp’_‘Agp
Ay, A _
(s, As} T-solver assignment
{—4q, A4z} o
} y <3
~(y >5)
—(x 4y =4)

ﬁ(y - 6) 23/29

Theory propagation: Example

BT (A) =z =1, B2T(A;) =y <3, B2T(As) =y > 5,
BT (Ay) = x4y =4, B2T(4s) =y =
o = {{41}, SAT solver trail
{A27 A3}> A;Ap ’ _\AZZ)]
{As, As} T-solver assignment
{41, -4,} z =1
} —(y <3)

23/29

Theory propagation: Example

B2T(A) =z =1, B2T (4;) =y <3, B2T (A3) =y > 5,
BT (Ay) = x4y =4, B2T(4s) =y =
o = {{41}, SAT solver trail

{A27 A3}> A;Ap 4 _\AZZ)] 4 Agp

{As, As} T-solver assignment

{41, -4,} z =1

} —(y <3)
(y >5)

23/29

Theory propagation: Example

BaT(A) =z =1, B2T(4) =y <3, B2T(4s) =y > 5,
B2T (A) =z +y = 4, B2T (As) =y =
oF = [{A), SAT solver trail
{4, 43}, AP AT AP AT
{As, As} T-solver assignment
{_‘ATa_‘AZ} 7%=
(y >5)
—\(1‘ +y= 4)

23/29

Theory propagation: Example

BT (A) =z =1, B2T(4;) =y <3, B2T(As) =y > 5,
BT (Ay) = x4y =4, B2T(4s) =y =
o = {{41}, SAT solver trail
{A2, A3}, AP AT AP AR AV
{As, As} T-solver assignment
{4, A} =1
} —(y <3)
(y >5)
—(x+y=4)
y>5

23/29

Early pruning

- T-solver knows the currently assigned literals p”
- if u” =7 L, declare before setting all literals

For correctness

- needs to provide explanations of the conflicts

- can perform cheaper approximate check — does not have to detect all
inconsistencies

- the expensive full check needs to be performed only for the complete
assignments

2429

Interface of T-solver

T-solver can be instantiated arbitrarily, but it should

- handle assignment of literal values efficiently
- backtrack efficiently
- provide reasons for theory conflicts

It further can

- perform theory propagation (identify implied literals)

- perform early pruning (identify theory conflicts during the search)

25/29

Interface of T-solver

Possible interface of the T-solver

+ void notifyAtom(lit)

- void assignLiteral(lit)

+ void push()

- void pop()

- result checkSat()

- option<result> checkSat_approx()

- list<1lit> getConflictReason()

+ option<lit> getPropagatedLiteral()

+ list<lit> getExplanation(lit)

26/ 29

Other improvements

- normalize T-literals
- (@>y)~(z <y)
- (y+3+x)~x+y+3
- eagerly learn some interesting T-lemmas
— ifthe formula contains z =0 and z =1
- add T-lemma —(x = 0) V =(x = 1) before solving
- pure literal filtering
- if the formula contains a literal I only positively and the current assignment
contains —=I, do not send —[to the T-solver
- splitting on demand
- when T-solver wants to do a case split, it can add a new T-lemma
corresponding to the split to the SAT solver
- can introduce new T'-literals and new Boolean variables
- (x+y<0)V(zr+y=>0)

- case split will be performed as part of the propositional search -

Modern smT solvers

LRA-solver

LIA-solver

cbcL solver

BV-solver

UF-solver

Theory combination

28 /29

- theory solvers for selected theories

29/29

	Eager algorithms
	Lazy algorithms
	CDCL(T)

