
Selected Algorithms for Theory Solvers
IA085: Satisfiability and Automated Reasoning

Martin Jonáš

FI MUNI, Spring 2024

Last time

CDCL solver T -solver

φ

SAT/UNSAT

assigned variable
backtracked variable

T -conflict+explanation
T -propagation

T -lemma

1 / 38

Last time

CDCL solver T -solver

φ

SAT/UNSAT

assigned variable
backtracked variable

T -conflict+explanation
T -propagation

T -lemma

1 / 38

Last time

Possible interface of the T -solver

• void notifyAtom(lit)

• void assignLiteral(lit)

• void push()

• void pop()

• result checkSat()

• option<result> checkSat_approx()

• list<lit> getConflictReason()

• option<lit> getPropagatedLiteral()

• list<lit> getExplanation(lit)

2 / 38

Last time

Possible interface of the T -solver

• void notifyAtom(lit)

• void assignLiteral(lit)

• void push()

• void pop()

• result checkSat()

• option<result> checkSat_approx()

• list<lit> getConflictReason()

• option<lit> getPropagatedLiteral()

• list<lit> getExplanation(lit)

2 / 38

Equality and uninterpreted functions

Theory of equality and uninterpreted functions

Signature

• a countable set of function symbols Σf = {f, g, h, . . .}
• single predicate symbol Σp = {=}

Theory

• TUF is a set of all Σ-structures

Idea

• we only know that = is equivalence and
• the symbols in Σf are interpreted as functions → for equal arguments return

equal results → equality is congruence
3 / 38

Running example

f(x, y) = x ∧ f(f(x, y), y) = z ∧ g(x) ̸= g(z)

4 / 38

Applications of uninterpreted functions

• verification of software and hardware (represent unknown external
components/functions)

• abstraction of complex parts of the system
• SMT-solving – overapproximation; cheaper unsatisfiability check
• . . .

5 / 38

Flashbacks

Flashbacks from Mathematical Foundations of Computer Science

• each equivalence ∼ ⊆ X2 partitions X to a set of equivalence classes X/∼

• the equivalence class of x ∈ X is denoted [x]∼

Flashbacks from Algebra

• given a set of functions Σf , an equivalence ∼ is congruence if for any f ∈ Σf

of arity k and xi, yi ∈ X

(x1 ∼ y1) ∧ (x2 ∼ y2) ∧ . . . ∧ (xk ∼ yk) =⇒ f(x1, x2, . . . , xk) ∼ f(y1, y2, . . . , yk)

6 / 38

Herbrand universe

Herbrand universe

• a set of all terms over the signature Σf

• denoted T
• can be turned to Σf -structure: all functions work syntactically f applied to t1

and t2 returns f(t1, t2)

7 / 38

Main theorem

Theorem
A set of equalities E and disequalities D is TUF satisfiable if and only if there
exists a congruence ∼ on T such that

• tl ∼ tr for all (tl = tr) ∈ E , and
• tl ̸∼ tr for all (tl ̸= tr) ∈ D.

Proof.
• “⇒”: Set t1 ∼ t2 iff Jt1K = Jt2K in the model.
• “⇐”: Construct model from the equality classes.

8 / 38

Subterm set

Idea

• terms not occurring in the formula φ are not relevant to its satisfiability
• define a set Tφ of all subterms of φ
• compute equivalence classes only of Tφ

Example
Given φ = f(x, y) = x ∧ f(f(x, y), y) = z ∧ g(x) ̸= g(z)

Tφ = {x, y, z, f(x, y), g(x), g(z), f(f(x, y), y)}

9 / 38

Congruence closure

Congruence closure of R ⊆ X2

• the smallest congruence R∗ that contains R

• alternatively: R∗ =
∩

S is congruence ,R⊆S{S}

Computing congruence closure
Compute the least fixed point of Ri defined by

R0 = R

Ri+1 = Ri ∪ idX ∪
{(x, y) ∈ X2 | (y, x) ∈ Ri} ∪
{(x, z) ∈ X2 | (x, y) ∈ Ri, (y, z) ∈ Ri} ∪
{(f(x1, . . . , xk), f(y1, . . . , yk)) ∈ X2 | (xj , yj) ∈ Ri for all 1 ≤ j ≤ Ar(f)}

Does it have to terminate?

10 / 38

Congruence closure

Congruence closure of R ⊆ X2

• the smallest congruence R∗ that contains R

• alternatively: R∗ =
∩

S is congruence ,R⊆S{S}

Computing congruence closure
Compute the least fixed point of Ri defined by

R0 = R

Ri+1 = Ri ∪ idX ∪
{(x, y) ∈ X2 | (y, x) ∈ Ri} ∪
{(x, z) ∈ X2 | (x, y) ∈ Ri, (y, z) ∈ Ri} ∪
{(f(x1, . . . , xk), f(y1, . . . , yk)) ∈ X2 | (xj , yj) ∈ Ri for all 1 ≤ j ≤ Ar(f)}

Does it have to terminate?

10 / 38

Congruence closure

Congruence closure of R ⊆ X2

• the smallest congruence R∗ that contains R

• alternatively: R∗ =
∩

S is congruence ,R⊆S{S}

Computing congruence closure
Compute the least fixed point of Ri defined by

R0 = R

Ri+1 = Ri ∪ idX ∪
{(x, y) ∈ X2 | (y, x) ∈ Ri} ∪
{(x, z) ∈ X2 | (x, y) ∈ Ri, (y, z) ∈ Ri} ∪
{(f(x1, . . . , xk), f(y1, . . . , yk)) ∈ X2 | (xj , yj) ∈ Ri for all 1 ≤ j ≤ Ar(f)}

Does it have to terminate? 10 / 38

More practical main theorem

Theorem
A formula

φ =
∧

E ∧
∧

D,

where E is a set of equalities and D is a set of disequalities, is TUF satisfiable if
and only if the congruence closure of {(tl, tr) | (tl = tr) ∈ E} over Tφ does not
contain any (tl, tr) such that (tl ̸= tr) ∈ D.

11 / 38

Congruence closure algorithm: theoretical description

Algorithm

1. start with singleton equivalence classes {t} for each t ∈ Tφ
2. for each (tl = tr) ∈ E , merge the equivalence classes [tl] and [tr] and all

classes that need to be merged due to congruence
3. if at any point [tl] = [tr] for some (tl ̸= tr) ∈ D, return unsat
4. otherwise return sat

12 / 38

Congruence closure: example

f(x, y) = x ∧ f(f(x, y), y) = z ∧ g(x) ̸= g(z)

13 / 38

Congruence closure algorithm: reality

Questions

1. how to represent the equivalence classes?
2. how to merge the equivalence classes?
3. how to decide if two terms are in the same equivalence class?
4. we have O(|φ|) subterms, each of size O(|φ|); do we really need O(|φ|2)

memory to store the set Tφ?

14 / 38

Reminder: Union-Find

Union-Find

• a data structure to store disjoint sets
• allows creating a singleton sets, merging two sets into one, and computing a

representative of a given set
• internally represented by a forest:

– set = tree in the forest
– representative = root of a tree

• each element stores its parent and rank

15 / 38

Reminder: Union-Find

1 make_singleton_set(value) {
2 return { value: value; parent = value; rank: 1}
3 }

1 find(item) {
2 repr ← item
3 while (repr ̸= repr.parent) {
4 repr = repr.parent
5 }
6 return repr
7 }

16 / 38

Reminder: Union-Find

1 union(item1, item2) {
2 repr1 ← find(item1)
3 repr2 ← find(item2)
4 if (repr1 = repr2) return
5

6 if (repr1.rank > repr2.rank) {
7 repr2.parent = repr1
8 } else if (repr1.rank < repr2.rank) {
9 repr1.parent = repr2

10 } else {
11 repr1.parent = repr2
12 repr2.rank++
13 }
14 }

17 / 38

E-graph

Efficient storage of terms with shared subterms.

Nodes

• constant/variable with 0 children
• function symbol f of arity k with k children

Example
Consider f(x, y) = x ∧ f(f(x, y), y) = z ∧ g(x) ̸= g(z).

We extend each node with parent pointer and rank to store equivalence classes
of terms à la union-find.

18 / 38

E-graph

Efficient storage of terms with shared subterms.

Nodes

• constant/variable with 0 children
• function symbol f of arity k with k children

Example
Consider f(x, y) = x ∧ f(f(x, y), y) = z ∧ g(x) ̸= g(z).

We extend each node with parent pointer and rank to store equivalence classes
of terms à la union-find.

18 / 38

Asserting new literals

1 def assert(t = s):
2 todo ← [(t, s)]

3 while todo not empty:
4 (u, v)← todo.pop()
5 if find(u) = find(v): continue
6 union(u,v)
7 foreach f(u1, . . . , uk) and f(v1, . . . , vk) such that
8 ui = u, vi = v for some i and
9 find(uj) = find(vj) for all j

10 find(f(u1, . . . , uk)) ̸= find(f(v1, . . . , vk)):
11 todo.append((f(u1, . . . , uk), f(v1, . . . , vk)))
12 foreach (v ̸= w) ∈ inequalities:
13 if find(v) = find(w): return false
14 return true
15

16 def assert(t ̸= s):
17 if find(t) = find(s): return false
18 inequalities.append(t ̸= s)
19 return true

19 / 38

Computing explanations

Idea

• add explanations to each parent pointer (= edge of the E-graph)
• if find(u) = find(v), the explanation is union of

– sequence of explanations between u and the root find(u) and
– sequence of explanations between v and the root find(v).

Each union

• of t and s due to assert(t = s)

– explanation = the equality
• of f(u1, . . . , un) and f(v1, . . . , vn) due to find(ui) = find(vi) for all 1 ≤ i ≤ n

– explanation = the union of explanations of all find(ui) = find(vi)

20 / 38

Theory propagation

Notation

• t ∈ [s] = t is in the same subtree as s

After each union merge(t, s)

• propagate t′ = s′, where t′ ∈ [t] and s′ ∈ [s]

• propagate t′ ̸= r, where t′ ∈ [t], r′ ∈ [r] and there exists s′ ∈ [s] with
s′ ̸= r′ ∈ inequalities

After assertion of t ̸= s

• propagate t′ ̸= s′, where t′ ∈ [t] and s′ ∈ [s]

21 / 38

Efficient implementation

Implemented in most of the existing SMT solvers.

For efficient implementation and description of backtracking, see

• R. Nieuwenhuis, A. Oliveras: Fast congruence closure and extensions, 2007

22 / 38

Difference logic

Difference logic

Difference logic

• all atoms of form (x− y) ▷◁ k for ▷◁ ∈ {≤, <,≥, >,=, ̸=} and a number k
• can be over any numeric theory:

– DL(Q)

– DL(Z)

23 / 38

Applications of difference logic

• planning
• scheduling
• verification of timed automata
• . . .

aend − astart ≥ 10 ∧
bstart − aend ≥ 0 ∧
bend − bstart ≥ 5 ∧
bend − astart ≤ 13

24 / 38

Normalization

Atoms can be normalized to x− y ≤ k

• x− y ≥ k ; y − x ≤ −k

• x− y < k ; x− y ≤ k′ with k′ a smaller number than k (theory-dependent)
• x− y > k ; x− y ≥ k′ with k′ a bigger number than k (theory-dependent)
• x− y = k ; (x− y ≤ k) ∧ (x− y ≥ k)

• x− y ̸= k ; (x− y < k) ∨ (x− y > k) (needs to be done in the original
formula)

Need theory solver only for φ =
∧
(xi − yj ≤ kj)

25 / 38

Running examples

Example

(x− y ≤ 3) ∧ (y − z ≤ −11) ∧ (x− z ≤ −1) ∧
(v − y ≤ 15) ∧ (z − v ≤ 5) ∧ (v − x ≤ 2)

Example

(x− y ≤ 3) ∧ (y − z ≤ −7) ∧ (x− z ≤ −1) ∧
(v − y ≤ 15) ∧ (z − v ≤ 5) ∧ (v − x ≤ 2)

26 / 38

Running examples

Example

(x− y ≤ 3) ∧ (y − z ≤ −11) ∧ (x− z ≤ −1) ∧
(v − y ≤ 15) ∧ (z − v ≤ 5) ∧ (v − x ≤ 2)

Example

(x− y ≤ 3) ∧ (y − z ≤ −7) ∧ (x− z ≤ −1) ∧
(v − y ≤ 15) ∧ (z − v ≤ 5) ∧ (v − x ≤ 2)

26 / 38

Constraint graph

Given a formula φ =
∧
(xi − yj ≤ kj), we can construct a constraint graph Gφ.

Nodes

• variables of φ

Edges

• edge between x and y of weight k for each conjunct (x− y ≤ k) of φ

27 / 38

Main theorem

Theorem
The formula φ =

∧
(xi − yj ≤ kj) is DL-satisfiable if and only if Gφ does not

contain negative cycle.

Proof.
• “⇒”: Show by induction that if there is a path between x and y in Gφ of

weight k, then φ |=DL (x− y) ≤ k

• “⇐”: Construct a model from shortest paths.

28 / 38

Main theorem

Theorem
The formula φ =

∧
(xi − yj ≤ kj) is DL-satisfiable if and only if Gφ does not

contain negative cycle.

Proof.
• “⇒”: Show by induction that if there is a path between x and y in Gφ of

weight k, then φ |=DL (x− y) ≤ k

• “⇐”: Construct a model from shortest paths.

28 / 38

Algorithm for difference logic theory solver

Algorithm

1. Construct the graph Gφ.
2. Add a new node s with edges of weight 0 to all nodes of Gφ

3. Run Bellman-Ford algorithm from s.
4. If the algorithm finds negative cycle, return unsat; otherwise return sat.

29 / 38

Computing explanations

Idea

• edges of Gφ = conjuncts φ

• unsatisfiability reason = cycle of negative weight
• unsatisfiability explanation = conjuncts on the cycle

30 / 38

Theory propagation

Idea

1. Compute (or maintain) shortest paths between all pairs of vertices x and y

2. If dist(x, y) = d, propagate all x− y ≤ k with k ≥ d

31 / 38

Efficient implementation

Implemented in most of the existing SMT solvers that deal with arithmetic.

For efficient implementation and description of backtracking and theory
propagation, see

• A. Armando, C. Castellini, E. Giunchiglia, M. Maratea: A SAT-Based Decision
Procedure for the Boolean Combination of Difference Constraints, SAT 2004

• S. Cotton, O. Maler: Fast and Flexible Difference Constraint Propagation for
DPLL(T), SAT 2006

32 / 38

Other theories (quick overview)

Linear Real Arithmetic

Normalization

• atoms of form a1x1 + a2x2 + . . .+ akxk ≤ b

Theory solver

• decide satisfiability conjunctions of atoms of form
a1x1 + a2x2 + . . .+ akxk ≤ b and their negations

• simplex algorithm
• needs changes to be incremental and backtrackable, see

– B. Dutetre, L. de Moura: A Fast Linear-Arithmetic Solver for DPLL(T), CAV 2006

33 / 38

Linear Integer Arithmetic

Much more complicated. Combination of:

• simplex on the LRA relaxation of the formula
• branch and bound
• cutting planes
• diophantine equation solving
• . . .

34 / 38

Linear Integer Arithmetic

[from A.Griggio: A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic] 35 / 38

Bit-vectors

Combinations of

1. heavy preprocessing
2. converting all operations to Boolean circuits that compute them (usually

and-inverter graphs)
3. more preprocessing
4. computing propositional formula that encodes the circuit
5. often done eagerly

The conversion of bit-vector formula to the equisatisfiable propositional formula
is called bit-blasting.

36 / 38

Arrays

Lazy approach

1. treat read and write as uninterpreted functions
2. check UF-satisfiability
3. if unsat, return unsat
4. if sat, check whether the model satisfies array axioms

– if it does, return sat
– if not, add the violated axioms and check UF-satisfiability again

37 / 38

Next time

• combination of theories
• Nelson-Oppen algorithm

38 / 38

	Equality and uninterpreted functions
	Difference logic
	Other theories (quick overview)

