Selected Algorithms for Theory Solvers
IA085: Satisfiability and Automated Reasoning

Martin Jonas

FI MUNI, Spring 2024

assigned variable
backtracked variable

Ty

cbcL solver T-solver

h ~_

T-conflict+explanation

T-propagation

1/38

2
assigned variable
backtracked variable
cbcL solver

T-conflict+explanation

T-propagation

h ~_

1/38

IIHHHHHHHHIII

Possible interface of the T-solver

+ void notifyAtom(lit)

- void assignLiteral(lit)

+ void push()

- void pop()

- result checkSat()

- option<result> checkSat_approx()

- list<1lit> getConflictReason()

+ option<lit> getPropagatedLiteral()

+ list<lit> getExplanation(lit)

2/38

IIHHHHHHHHIII

Possible interface of the T-solver

+ void notifyAtom(lit)

+ void push()
- void pop()

- option<result> checkSat_approx()

2/38

Equality and uninterpreted functions

Theory of equality and uninterpreted functions

Signature

- a countable set of function symbols ©f = {f,g,h,...}
- single predicate symbol ¥? = {=}

Theory

- Tyr is a set of

Idea

- we only know that = is and
- the symbols in £/ are interpreted as functions — for equal arguments return
equal results — equality is
3/38

Running example

flzy) =2 AN f(f(z,9),y) =2 A g(z)# 9(2)

438

Applications of uninterpreted functions

- verification of software and hardware (represent unknown external
components/functions)

- abstraction of complex parts of the system

- SMT-solving — overapproximation; cheaper unsatisfiability check

5/38

Flashbacks

Flashbacks from Mathematical Foundations of Computer Science

- each equivalence ~ C X? partitions X to a set of classes X/~

- the equivalence class of z € X is denoted [z]..

Flashbacks from Algebra

- given a set of functions ¥/, an equivalence ~ is if for any f € ©f
of arity k and z;,y; € X

($1 Ny1)/\($2 Nyz)/\.../\(.’IJk Nyk) — f($1,xz,...,$k) Nf(yq,yz,...,yk)

6/38

Herbrand universe

Herbrand universe

- asetof over the signature ©f
- denoted T

- can be turned to X/-structure: all functions work syntactically f applied to ¢
and t, returns f(t1,t2)

7/38

Theorem N . N , , . ,
A set of equalities £ and disequalities D is Tyg satisfiable if and only if there

exists a congruence ~ on T such that
-ty ~t, forall (t; =t,) € & and
<ty Lt forall (t; #t,) € D.

Proof.
- =" Set ty ~ by iff [t4] = [¢2] in the model.
- “«<": Construct model from the equality classes.

8/38

Subterm set

Idea

- terms not occurring in the formula ¢ are not relevant to its satisfiability
- define a set 7, of all of ¢

Example
Given o = f(x,y) =z N f(f(z,y),y) =2z A g(x) # g(2)

To ={z,y. 2, f(2,y),9(x),9(2), f(f(z,v),y)}

9/38

Congruence closure

Congruence closure of R C X?

- the smallest congruence R* that contains R

- alternatively: R* = mS is congruence ,RQS{S}

10/38

Congruence closure

Congruence closure of R C X?

- the smallest congruence R* that contains R

- alternatively: R* =(\gis e ,RQS{S}

Computing congruence closure

Compute the least fixed point of R; defined by
Ry=R

Riy1=R;Uidx U
{(z,y) € X*| (y,2) € Ri} U
{(z,2) € X*| (z,9) € Ry, (y,2) € Ri} U
{(fry. .), Fy, -y ur)) € X2 | (5,y;) € R forall1 < j < Ar(f)}

10/38

Congruence closure

Congruence closure of R C X?

- the smallest congruence R* that contains R

- alternatively: R* =(\gis e ,RQS{S}

Computing congruence closure

Compute the least fixed point of R; defined by
Ry=R

Riy1=R;Uidx U
{(z,y) € X*| (y,2) € Ri} U
{(z,2) € X*| (z,9) € Ry, (y,2) € Ri} U
{(fry. .), Fy, -y ur)) € X2 | (5,y;) € R forall1 < j < Ar(f)}

Does it have to terminate? 10/38

More practical main theorem

Theorem
A formula

goz/\E/\/\D,

where £ is a set of equalities and D is a set of disequalities, is Tyg satisfiable if

and only if the congruence closure of {(t;,t,) | (t; = t,) € £} over T, does not
contain any (t;,t,) such that (t; # t,) € D.

1/38

Congruence closure algorithm: theoretical description

Algorithm

1. start with singleton equivalence classes {t} for each t € 7,

2. for each (t; = t,) € €, merge the equivalence classes [t;] and [¢,] and all
classes that need to be merged due to congruence

3. if at any point [t;] = [t,] for some (¢; # t,) € D, return unsat
4. otherwise return sat

12/38

Congruence closure: example

flzy) =2 AN f(f(z,9),y) =2 A g(z)# 9(2)

13/38

Congruence closure algorithm: reality

Questions

1. how to represent the equivalence classes?
how to merge the equivalence classes?

how to decide if two terms are in the same equivalence class?

= &N

we have O(|¢|) subterms, each of size O(|p|); do we really need O(|o|?)
memory to store the set 7.,?

14 /38

Reminder: Union-Find

Union-Find
- a data structure to store

- allows creating a singleton sets, merging two sets into one, and computing a
representative of a given set

- internally represented by a forest:

- set =tree in the forest
- representative = root of a tree

- each element stores its parent and rank

15/38

Reminder: Union-Find

1 make_singleton_set(value) {
2 return { value: value; parent = value; rank: 1}

1 find(item) {

repr < item

while (repr # repr.parent) {
repr = repr.parent

}

return repr

~ o &~ W N

16 /38

Reminder: Union-Find

union(iteml, item2) {

2 reprl < find(iteml)

3 repr2 < find(item2)

4 if (reprl = repr2) return

5

6 if (reprl.rank > repr2.rank) {
7 repr2.parent = reprl

8 } else if (reprl.rank < repr2.rank) {
9 reprl.parent = repr2

10 } else {

n reprl.parent = repr2

12 repr2.rank++

13 }

%o}

17 /38

Efficient storage of terms with shared subterms.

Nodes

- constant/variable with 0 children

- function symbol f of arity k& with %k children

Example
Consider f(z,y) == A f(f(z,y),y) =2 A g(z) # g(2).

18/38

Efficient storage of terms with shared subterms.

Nodes

- constant/variable with 0 children
- function symbol f of arity k& with %k children

Example
Consider f(z,y) == A f(f(z,y),y) =2 A g(z) # g(2).

We extend each node with parent pointer and rank to store equivalence classes
of terms a la union-find.

18/38

Asserting new literals

© O N O U R W N o

o

1

def assert(t=s):
todo <« [(¢,9)]
while todo not empty:
(u,v) todo.pop()
if find(u) = find(v): continue
union (u,v)
foreach f(uq,...,ug) and f(v1,...,v,) such that
u; =u, vi=v for some 7 and
find(u;) = find(v;) for all j
find (f(u1,...,uk)) # find(f(v,...,v%)):
todo.append ((f(u1,...,uk), f(v1,...,0k)))
foreach (v# w) € inequalities:
if find(v) = find(w): return false

return true

def assert(t#s):
if find(t) = find(s): return false
inequalities.append (¢ # s)

return true

19 /38

Computing explanations

Idea

- add explanations to each parent pointer (= edge of the E-graph)
- if find(u) = find(v), the explanation is union of

- sequence of explanations between w and the root find(u) and

- sequence of explanations between v and the root £ind(v).

Each union

- of t and s due to assert(t = s)
- explanation = the equality

- of f(uy,...,up) and f(vq,...,v,) due to find(u;) = find(v;) forall 1<i <n
- explanation = the union of explanations of all find(u;) = find(v;)

20/38

Theory propagation

Notation

- t € [s] =tisin the same subtree as s

After each union merge(t, s)

- propagate ¢’ = s/, where ¢’ € [t] and ¢’ € [s]
- propagate t’ # r, where t’ € [t], v’ € [r] and there exists s’ € [s] with
s’ #r' € inequalities

After assertion of t # s

- propagate ' # s/, where ¢’ € [t] and s’ € [s]

21/38

Efficient implementation

Implemented in most of the existing SMT solvers.

For efficient implementation and description of backtracking, see

- R. Nieuwenhuis, A. Oliveras: Fast congruence closure and extensions, 2007

22 /38

Difference logic

Difference logic

Difference logic

- all atoms of form (z — y) = k for < € {<, <, >, >,=,#} and a number k
- can be over any numeric theory:

- DL(Q)
- DL(Z)

23/38

Applications of difference logic

- planning
- scheduling

- verification of timed automata

Gend — Qstart => 10 A
bstart — Gend = 0 A
bend - bstart >5A

bend — Gstart < 13

24 [38

Atoms can be normalizedtoz —y < k

cx—y>k ~ y—x< -k

czx—y<k ~ x—y <k with k" asmaller number than k (theory-dependent)

cx—y>k ~ x—y>Fk with k" a bigger number than & (theory-dependent)
rr—y=k ~ (z-y<kA(z-y=k)
cx—y#k ~ (r—y<k)V(z—y>k)(needsto be donein

)

Need theory solver only for ¢ = A(x; — y; < kj)

25/38

Running examples

Example

(—y<3) A (y—2z<-1) A (z—2<-1)A
(v—y<15) A (z—v<5) A (v—x<2)

26 /38

Running examples

Example

(—y<3) A (y—2z<-1) A (z—2<-1)A
(v—y<15) A (z—v<5) A (v—x<2)

Example

(x—y<3) A (y—2z<-7) AN (z—2z<-=1)A
(v—y<15) A (z—v<5) A (v—x<2)

26 /38

Constraint graph

Given a formula ¢ = A(z; —y; < k;), we can construct a G

Nodes

- variables of ¢

Edges

- edge between x and y of weight k for each conjunct (z —y < k) of ¢

27138

Theorem
The formula ¢ = A\(z; —y; < k;) is DL-satisfiable if and only if G, does not

contain negative cycle.

28 /38

Theorem
The formula ¢ = A\(z; —y; < k;) is DL-satisfiable if and only if G, does not
contain negative cycle.

Proof.

- “=": Show by induction that if there is a path between x and y in G, of
weight k, then ¢ Epr, (z —y) < k

- “«" Construct a model from shortest paths.

28 /38

Algorithm for difference logic theory solver

Algorithm

1. Construct the graph G,.
2. Add a new node s with edges of weight 0 to all nodes of G,
3. Run Bellman-Ford algorithm from s.

4. If the algorithm finds negative cycle, return unsat; otherwise return sat.

29/38

Computing explanations

Idea

- edges of G, = conjuncts ¢
- unsatisfiability reason = cycle of negative weight

- unsatisfiability explanation = conjuncts on the cycle

30/38

Theory propagation

Idea

1. Compute (or maintain) shortest paths between all pairs of vertices x and y
2. If dist(z,y) = d, propagate all z —y < k with k > d

31/38

Efficient implementation

Implemented in most of the existing sMT solvers that deal with arithmetic.

For efficient implementation and description of backtracking and theory
propagation, see

- A. Armando, C. Castellini, E. Giunchiglia, M. Maratea: A SAT-Based Decision
Procedure for the Boolean Combination of Difference Constraints, SAT 2004

- S. Cotton, O. Maler: Fast and Flexible Difference Constraint Propagation for
DPLL(T), SAT 2006

32/38

Other theories (quick overview)

Linear Real Arithmetic

Normalization

- atoms of form a1z + axry + ... +apxr < b

Theory solver

- decide satisfiability of atoms of form
a1z + axxry + ...+ agxy, < band their negations

- needs changes to be incremental and backtrackable, see
- B. Dutetre, L. de Moura: A Fast Linear-Arithmetic Solver for DPLL(T), CAV 2006

33/38

Linear Integer Arithmetic

Much more complicated. Combination of:

- simplex on the LRA relaxation of the formula
- branch and bound

- cutting planes

- diophantine equation solving

34/38

Linear Integer Arithmetic

LA(Z)-conflict

conflict . c
no conflict
Diophantine
LA(Q)-solver 9 no conflict equations handler
;—’r equality elimination
. LA(Z) model
no conflict o —() o

trail simplifications Internal e

DPLL

Branch and Bounc

e conflict timeont o LA(Z) model
'

o Branch and Bound-lemma ;ran(:h and Bounc
lCIIllIlElS g‘(:llerdt()r

sat

35/38

Combinations of

1. heavy preprocessing

2. converting all operations to Boolean circuits that compute them (usually
)

3. more preprocessing

4. computing formula that encodes the circuit

5. often done

The conversion of bit-vector formula to the equisatisfiable propositional formula
is called

36/38

Lazy approach

1. treat read and write as
check UF-satisfiability

if unsat, return unsat

= @

if sat, check whether the model satisfies array axioms

- if it does, return sat
- if not, add the violated axioms and check UF-satisfiability again

37/38

- combination of theories

- Nelson-Oppen algorithm

38/38

	Equality and uninterpreted functions
	Difference logic
	Other theories (quick overview)

