Combination of Theories

IA085: Satisfiability and Automated Reasoning

Martin Jonáš

FI MUNI, Spring 2024

- $\cdot\,$ theory solvers for UF and difference logic
- \cdot sketches of ideas of other theory solvers

- all formulas are quantifier-free (necessary)
- all formulas are conjunctions of literals (not necessary)

Combination of theories

Practical applications combine several theories

$$x = y + 2 \land \left(f(x-1) \neq f(y+1) \lor \operatorname{read}(a,x) = \operatorname{read}(a,y) \right)$$

 \cdot formula over $T_{
m LIA}$, $T_{
m UF}$, and $T_{
m A}$

Practical applications combine several theories

$$x = y + 2 \land \left(f(x-1) \neq f(y+1) \lor \operatorname{read}(a,x) = \operatorname{read}(a,y) \right)$$

- \cdot formula over $T_{
 m LIA}$, $T_{
 m UF}$, and $T_{
 m A}$
- \cdot it is impractical to create a new T solver for each combination of theories

Goal

 \cdot construct a solver for the combined theory modularly from existing T-solvers for the individual theories

Goal

Setup

- $\cdot T_1$ over signature Σ_1
- T_2 over signature Σ_2
- · are signature disjoint, i.e., $\Sigma_1 \cap \Sigma_2 = \{=\}$

Want to define combined theory $T_1 \oplus T_2$ over $\Sigma = \Sigma_1 \cup \Sigma_2$.

lf

- \cdot T_1 is given by axioms A_1 and
- \cdot T_2 is given by axioms A_2

then

 $\cdot T_1 \oplus T_2$ is given by axioms $A_1 \cup A_2$

Combined theory: model-based view

Let

- $\mathcal{A} = (A, (_)^{\mathcal{A}})$ be Σ_A -structure
- $\Sigma_B \subseteq \Sigma_A$

Σ_B reduct of \mathcal{A}

- Σ_B structure $\mathcal{B} = (A, (_)^{\mathcal{B}})$ where
- $f^{\mathcal{B}} = f^{\mathcal{A}}$ for all $f \in \Sigma_B^f$
- $\cdot \ P^{\mathcal{B}} = P^{\mathcal{A}} \text{ for all } P \in \Sigma^p_B$
- \cdot also denoted $\mathcal{A}\big|_{\Sigma_B}$

Example $\{+,\leq\}$ -reduct of $(\mathbb{Z},+,\times,\leq)$ is $(\mathbb{Z},+,\leq)$

 Σ -structures \mathcal{A} and \mathcal{B} are elementarily equivalent if they satisfy exactly the same Σ -formulas.

Example

- $\cdot\,$ all isomorphic $\Sigma\text{-structures}$ are elementarily equivalent
- $\cdot \ (\mathbb{Q},\leq)$ and (\mathbb{R},\leq) are elementarily equivalent
- + (\mathbb{Z},\leq) and (\mathbb{Q},\leq) are not elementarily equivalent

 $T_1 \oplus T_2 = \{A \mid A \text{ is a } \Sigma \text{-structure},$ $\Sigma_1 \text{-reduct of } A \text{ is elementarily equivalent to some } A_1 \in T_1 \text{, and}$ $\Sigma_2 \text{-reduct of } A \text{ is elementarily equivalent to some } A_2 \in T_2 \}$ Nelson-Oppen method (1979)

Without loss of generality, we will consider only combination of two theories T_1 and T_2 .

- \cdot *i*-term = its topmost function symbol is in Σ_i
- *i*-atom = its predicate function symbol is in Σ_i or is of form s = t with *i*-terms s and t
- *i*-literal = *i*-atom or its negation
- *i*-pure subformula or subterm = all its function and predicate symbols are from Σ_i
- pure subformula or subterm = *i*-pure for some *i*
- alien subterm = maximal *i*-subterm of an atom that is not *i*-atom

$$f(x+1) = f(42) \land f(g(x)) = x + y \land y \ge x + 10$$

What are

- LIA-terms, UF-terms?
- LIA-literals, UF-literals?
- pure LIA subterms/subformulas, pure UF subterms/subformulas?
- alien subterms?

Purification

Purification

- $\cdot\,$ given $\varphi_{\rm l}$ compute $\varphi_{\rm l}$ and $\varphi_{\rm 2}$ such that
 - φ_1 is 1-pure,
 - φ_2 is 2-pure, and
 - $\varphi_1 \wedge \varphi_2$ is equisatisfiable with φ

Purification

Purification

- \cdot given φ_1 compute φ_1 and φ_2 such that
 - φ_1 is 1-pure,
 - φ_2 is 2-pure, and
 - $\varphi_1 \wedge \varphi_2$ is equisatisfiable with φ

Algorithm

- 1. while φ contains any alien subterm t, create a new variable x_t , replace all occurrences of t by x_t and add a new equality $x_t = t$
- 2. now all literals are pure
- 3. set φ_i to all *i*-pure literals

$(f(x+1) = f(42)) \land (f(g(x)) = x + y) \land (y \ge x + 10)$

$$(f(x+1) = f(42)) \land (f(g(x)) = x+y) \land (y \ge x+10)$$

$(f(z) = f(v)) \ \land \ (w = x + y) \ \land \ (y \ge x + 10) \ \land \ (z = x + 1) \ \land \ (v = 42) \ \land \ (w = f(g(x)))$

$$(f(x+1) = f(42)) \land (f(g(x)) = x+y) \land (y \ge x+10)$$

$$(f(z) = f(v)) \land (w = x + y) \land (y \ge x + 10) \land (z = x + 1) \land (v = 42) \land (w = f(g(x)))$$

$$\begin{aligned} \varphi_1 &= f(z) = f(x) \land w = f(g(x)) \\ \varphi_2 &= v = x + y \land y \ge x + 10 \land w = x + 1 \land v = 42 \end{aligned}$$

From now on

- $\varphi = \varphi_1 \wedge \varphi_2$
- φ_1 is 1-pure
- φ_2 is 2-pure

Theorem (Attempt 1) The following are equivalent

- 1. φ is ($T_1 \oplus T_2$)-satisfiable
- 2. φ_1 is T_1 -satisfiable and φ_2 is T_2 -satisfiable.

Does not hold

Theorem (Attempt 1) The following are equivalent

- 1. φ is ($T_1 \oplus T_2$)-satisfiable
- 2. φ_1 is T_1 -satisfiable and φ_2 is T_2 -satisfiable.

Does not hold

- + $\varphi_1 = (z = x + y) \land (v = y + x)$ is satisfiable in LRA
- $\varphi_2 = f(z) \neq f(v)$ is satisfiable in UF
- + $\varphi = \varphi_1 \wedge \varphi_2$ is not satisfiable in LRA \oplus UF

Interface equalities

Observation

• the T_1 -model and the T_2 -model have to agree on interface equalities = equalities between variables that are shared by φ_1 and φ_2

Arrangement

- \cdot an equivalence R over a finite set of terms S
- \cdot induces a formula

$$ar_R(S) = \bigwedge_{(s,t) \in R} (s=t) \land \bigwedge_{(s,t) \notin R} (s \neq t)$$

• we will consider arrangements over shared variables $C = Vars(\varphi_1) \cap Vars(\varphi_2).$ **Theorem (Attempt 2)** The following are equivalent

- 1. φ is ($T_1 \oplus T_2$)-satisfiable,
- 2. there is an arrangement R of variables C such that $\varphi_1 \wedge ar_R(C)$ is T_1 -satisfiable and $\varphi_2 \wedge ar_R(C)$ is T_2 -satisfiable.

Does not hold

- $x = 42 \land y = 42 \land x = y$ is satisfiable in LIA
- $\cdot x = y$ is satisfiable in BV₈ (bit-vectors of width 8)
- $x = 42 \land y = 42 \land x = y$ is not satisfiable in LIA \oplus BV₈ (why?)
- + $LIA \oplus BV_8$ is empty

Stably infinite theory \boldsymbol{T}

 \cdot if φ has a T-model, then it has a T-model with infinite universe

Example

- $\cdot\,$ LIA, LRA, NIA, NRA are stably infinite
- $\cdot\,\,{
 m UF}$ is stably infinite
- \cdot bit-vectors of fixed width are not stably infinite
- \cdot strings of bounded length are not stably infinite

Theorem (Nelson-Oppen, 1980) If T_1 and T_2 are stably infinite, then the following are equivalent

- 1. φ is $(T_1 \oplus T_2)$ -satisfiable,
- 2. there is an arrangement R of variables C such that $\varphi_1 \wedge ar_R(C)$ is T_1 -satisfiable and $\varphi_2 \wedge ar_R(C)$ is T_2 -satisfiable.

Theorem (Nelson-Oppen, 1980) If T_1 and T_2 are stably infinite, then the following are equivalent

- 1. φ is $(T_1 \oplus T_2)$ -satisfiable,
- 2. there is an arrangement R of variables C such that $\varphi_1 \wedge ar_R(C)$ is T_1 -satisfiable and $\varphi_2 \wedge ar_R(C)$ is T_2 -satisfiable.

Proof (sketch).

- 1 \Rightarrow 2: straighforward.
- 2 \Rightarrow 1: get two models A_1 and A_2 ; use stable infiniteness and upward Löwenheim-Skolem theorem to get elementarily equivalent models A'_1 and A'_2 that have the same cardinality; combine the structures

Algorithm

- 1. Purify the input formula into $\varphi_1 \wedge \varphi_2$
- 2. Non-deterministically guess an arrangement R of shared variables C.
- 3. Check T_1 -satisfiability of $\varphi_1 \wedge ar_R(C)$ and T_2 satisfiability of $\varphi_2 \wedge ar_R(C)$.
- 4. If both are satisfiable, return satisfiable.
- 5. Otherwise return unsatisfiable.

$$\begin{aligned} \varphi_{\text{LIA}} &= (v_1 \ge 0) \land (v_1 \le 1) \land (v_2 = 0) \land (v_3 = 1) \\ \varphi_{\text{UF}} &= (f(v_1) \ne f(v_2)) \end{aligned}$$

Problems

- \cdot non-deterministic algorithms are not practical
- if made deterministic, the number of arrangements is exponential with respect to |C| (Bell number)

Idea

- \cdot do not guess the arrangement, let the T-solvers build it together
- T_1 -solver propagates all implied interface equalities (equalities between of shared variables) to T_2 -solver
- \cdot T_2 -solver propagates all implied interface equalities to T_1 -solver
- if both solvers T_i decide that the formulas φ_i are satisfiable and do not imply any new equalities, the formula φ is satisfiable

Deterministic Nelson-Oppen algorithm

Problem

• Does not work in general

Problem

• Does not work in general

$$\begin{aligned} \varphi_{\text{LIA}} &= (v_1 \ge 0) \land (v_1 \le 1) \land (v_2 = 0) \land (v_3 = 1) \\ \varphi_{\text{UF}} &= (f(v_1) \ne f(v_2)) \land (f(v_1) \ne f(v_3)) \end{aligned}$$

Convexity

Convex theory

- $\boldsymbol{\cdot} \text{ if } \varphi \models_T \psi \lor \rho$
- · then $\varphi \models_T \psi$ or $\varphi \models_T \rho$

Example

- $\cdot\,$ UF, LRA are convex
- \cdot LIA is not convex:

$$\begin{aligned} - & x \ge 1 \land x \le 2 \models_{\text{LIA}} x = 1 \lor x = 2; \\ - & x \ge 1 \land x \le 2 \not\models_{\text{LIA}} x = 1 \\ - & x \ge 1 \land x \le 2 \not\models_{\text{LIA}} x = 2 \end{aligned}$$

Deterministic Nelson-Oppen algorithm

Algorithm

- 1. Purify the input formula into $\varphi_1 \wedge \varphi_2$
- 2. For both $i \in \{1, 2\}$
 - 2.1 Check satisfiability of φ_i by T_i
 - 2.2 Detect all equalities of variables C implied by φ_i
 - 2.3 Propagate them to the T_j solver $(i \neq j)$
- 3. If any of the T_i -solvers returned unsat, return unsat.
- 4. If no more equalities are propagated, return sat.
- 5. Go to 2.

Sound and complete for stably infinite and convex theories.

- deterministic Nelson-Oppen algorithm works only for convex theories
- \cdot complete propagation of equalities can be expensive and complicate the $T\mbox{-}{\rm solver}$

Delayed theory combination (2005)

Idea

- combine CDCL(T) and non-determinisic Nelson-Oppen algorithm
- use a SAT solver to "guess" the interface equalities and send them to the T_i -solvers
- + $T_i\text{-}\mathrm{unsatisfiability}$ causes backtracking in the SAT solver \rightarrow try another arrangement

Delayed theory Combination

Benefits

- fits well into CDCL(T) paradigm
- the T_i solvers can additionally perform theory propagation (but do not have to)

$$\begin{aligned} \varphi_{\text{LIA}} &= (v_1 \ge 0) \land (v_1 \le 1) \land (v_2 = 0) \land (v_3 = 1) \\ \varphi_{\text{UF}} &= (f(v_1) \ne f(v_2)) \end{aligned}$$

Problem

- \cdot delayed theory combination adds $\mathcal{O}(|C|^2)$ atoms to the SAT solver
- can slowdown the search

Solution

• be lazy

Algorithm

- 1. Start DTC with empty set of interface equalities.
- 2. If unsatisfiable, return unsatisfiable.
- 3. If satisfiable, check whether the obtained models A_1 and A_2 agree on all interface equalities.
 - 3.1 if they do, return satisfiable
 - 3.2 if they do not and all the interface equalities have been added, return unsatisfiable
 - 3.3 otherwise add the equalities in which they differ to the DTC solver and repeat

Summary of requirements

Non-deterministic Nelson-Oppen

• stably infinite theories

Deterministic Nelson-Oppen

- stably infinite theories
- \cdot T_i solvers that can deduce all implied equalities
- convex theories (or deduce also all disjunctions of equalities)

Delayed Theory Combination (and Model-based TC)

 \cdot stably infinite theories

Where are we?

Contents

Propositional satisfiability (SAT)

- $\cdot \ (A \lor \neg B) \land (\neg A \lor C)$
- is it satisfiable?

Satisfiability modulo theories (SMT)

- $\cdot \ x = 1 \ \land \ x = y + y \ \land \ y > 0$
- is it satisfiable over reals?
- is it satisfiable over integers?
- \leftarrow YOU ARE STANDING HERE

Automated theorem proving (ATP)

- axioms: $\forall x (x + x = 0)$, $\forall x \forall y (x + y = y + x)$
- do they imply $\forall x \forall y ((x + y) + (y + x) = 0)$?

- \cdot definition of first-order logic
- · definition of first-order theories and satisfiability modulo theories
- \cdot theories useful in practice
- CDCL(T) algorithm for solving SMT
- \cdot several algorithms for T-solvers (UF, difference logic) and ideas of others
- combination of theories

- \cdot satisfiability of quantified formulas
- first-order resolution (again)
- first-order superposition (again)