Combination of Theories

IA085: Satisfiability and Automated Reasoning

Martin Jonáš

FI MUNI, Spring 2024

- theory solvers for UF and difference logic
- sketches of ideas of other theory solvers
- all formulas are quantifier-free (necessary)
- all formulas are conjunctions of literals (not necessary)

Combination of theories

Practical applications combine several theories

$$
x = y + 2 \land \Big(f(x - 1) \neq f(y + 1) \lor \text{read}(a, x) = \text{read}(a, y) \Big)
$$

 \cdot formula over T_{LIA} , T_{UF} , and T_{A}

Practical applications combine several theories

$$
x = y + 2 \land \Big(f(x - 1) \neq f(y + 1) \lor \text{read}(a, x) = \text{read}(a, y) \Big)
$$

- formula over T_{LIA} , T_{UF} , and T_{A}
- \cdot it is impractical to create a new T solver for each combination of theories

Goal

• construct a solver for the combined theory modularly from existing *T*-solvers for the individual theories

Goal

Setup

- \cdot T_1 over signature Σ_1
- \cdot *T*₂ over signature Σ_2
- are signature disjoint, i.e., $\Sigma_1 \cap \Sigma_2 = \{=\}$

Want to define combined theory $T_1 \oplus T_2$ over $\Sigma = \Sigma_1 \cup \Sigma_2$.

If

- \cdot T_1 is given by axioms A_1 and
- \cdot *T*₂ is given by axioms A_2

then

 \cdot *T*₁ ⊕ *T*₂ is given by axioms $A_1 \cup A_2$

Combined theory: model-based view

Let•

- $\mathcal{A} = (A, (_)^{\mathcal{A}})$ be Σ_A -structure
- \cdot $\Sigma_B \subseteq \Sigma_A$

Σ_B reduct of ${\cal A}$

- \cdot Σ_B structure $\mathcal{B} = (A, (_)^{\mathcal{B}})$ where
- $f^{\mathcal{B}} = f^{\mathcal{A}}$ for all $f \in \Sigma_B^f$
- $P^{\mathcal{B}} = P^{\mathcal{A}}$ for all $P \in \Sigma^p_B$
- \cdot also denoted $\mathcal{A}\big|_{\Sigma_B}$

Example *{* + *,* ≤ *}*-reduct of (ℤ, + , × , ≤) is (ℤ, + , ≤)

Σ-structures *A* and *B* are elementarily equivalent if they satisfy exactly the same Σ-formulas.

Example

- \cdot all isomorphic Σ -structures are elementarily equivalent
- \cdot ($\mathbb{Q},$ <) and ($\mathbb{R},$ <) are elementarily equivalent
- \cdot (\mathbb{Z}, \leq) and (\mathbb{Q}, \leq) are not elementarily equivalent

 $T_1 \oplus T_2 = \{A \mid A \text{ is a } \Sigma \text{-structure},$

 $Σ₁$ -reduct of *A* is elementarily equivalent to some $A₁ ∈ T₁$, and Σ_2 -reduct of *A* is elementarily equivalent to some $A_2 \in T_2$

Nelson-Oppen method (1979)

Without loss of generality, we will consider only combination of two theories T_1 and T_2 .

- $\cdot i$ -term = its topmost function symbol is in Σ_i
- \cdot *i*-atom = its predicate function symbol is in Σ_i or is of form $s = t$ with *i*-terms *s* and *t*
- \cdot *i*-literal = *i*-atom or its negation
- *i*-pure subformula or subterm = all its function and predicate symbols are from Σ*ⁱ*
- pure subformula or subterm = *i*-pure for some *i*
- alien subterm = maximal *i*-subterm of an atom that is not *i*-atom

$$
f(x+1) = f(42) \land f(g(x)) = x + y \land y \ge x + 10
$$

What are

- LIA-terms, UF-terms?
- LIA-literals, UF-literals?
- pure LIA subterms/subformulas, pure UF subterms/subformulas?
- alien subterms?

Purification

Purification

- given φ , compute φ_1 and φ_2 such that
	- *φ*¹ is 1-pure,
	- φ_2 is 2-pure, and
	- *φ*¹ *∧ φ*² is equisatisfiable with *φ*

Purification

Purification

- \cdot given φ , compute φ_1 and φ_2 such that
	- *φ*¹ is 1-pure,
	- φ_2 is 2-pure, and
	- *φ*¹ *∧ φ*² is equisatisfiable with *φ*

Algorithm

- 1. while *φ* contains any alien subterm *t*, create a new variable *x^t* , replace all occurrences of *t* by x_t and add a new equality $x_t = t$
- 2. now all literals are pure
- 3. set φ_i to all *i*-pure literals

(*f*(*x* + 1) = *f*(42)) *∧* (*f*(*g*(*x*)) = *x* + *y*) *∧* (*y ≥ x* + 10)

$$
(f(x+1) = f(42)) \land (f(g(x)) = x + y) \land (y \ge x + 10)
$$

$(f(z) = f(v)) \wedge (w = x + y) \wedge (y \ge x + 10) \wedge (z = x + 1) \wedge (v = 42) \wedge (w = f(g(x)))$

$$
(f(x+1) = f(42)) \land (f(g(x)) = x + y) \land (y \ge x + 10)
$$

$$
(f(z) = f(v)) \land (w = x + y) \land (y \ge x + 10) \land (z = x + 1) \land (v = 42) \land (w = f(g(x)))
$$

$$
\varphi_1 = f(z) = f(x) \land w = f(g(x))
$$

$$
\varphi_2 = v = x + y \land y \ge x + 10 \land w = x + 1 \land v = 42
$$

From now on

- $\cdot \varphi = \varphi_1 \wedge \varphi_2$
- \cdot φ_1 is 1-pure
- \cdot φ_2 is 2-pure

Theorem (Attempt 1) *The following are equivalent*

- 1. φ *is* $(T_1 \oplus T_2)$ -satisfiable
- 2. φ_1 *is* T_1 -satisfiable and φ_2 *is* T_2 -satisfiable.

Does not hold

Theorem (Attempt 1) *The following are equivalent*

- 1. φ *is* $(T_1 \oplus T_2)$ -satisfiable
- 2. φ_1 *is* T_1 -satisfiable and φ_2 *is* T_2 -satisfiable.

Does not hold

- $\cdot \varphi_1 = (z = x + y) \wedge (v = y + x)$ is satisfiable in LRA
- $\cdot \varphi_2 = f(z) \neq f(v)$ is satisfiable in UF
- $\cdot \varphi = \varphi_1 \wedge \varphi_2$ is not satisfiable in LRA \oplus UF

Observation

 \cdot the T_1 -model and the T_2 -model have to agree on interface equalities = equalities between variables that are shared by φ_1 and φ_2

Arrangement

- an equivalence *R* over a finite set of terms *S*
- induces a formula

$$
ar_R(S) = \bigwedge_{(s,t)\in R} (s=t) \wedge \bigwedge_{(s,t)\notin R} (s \neq t)
$$

• we will consider arrangements over shared variables $C = Vars(\varphi_1) \cap Vars(\varphi_2).$

Theorem (Attempt 2) *The following are equivalent*

- 1. φ *is (T*₁ \oplus *T*₂)-satisfiable,
- 2. *there is an arrangement R of variables C such that* $\varphi_1 \wedge ar_R(C)$ *is T*₁-satisfiable and $\varphi_2 \wedge \arg(C)$ *is T*₂-satisfiable.

Does not hold

- $\cdot x = 42 \wedge y = 42 \wedge x = y$ is satisfiable in LIA
- $\cdot x = y$ is satisfiable in BV₈ (bit-vectors of width 8)
- $\cdot x = 42 \wedge y = 42 \wedge x = y$ is not satisfiable in LIA \oplus BV₈ (whv?)
- LIA ⊕ BV₈ is empty

Stably infinite theory *T*

• if *φ* has a *T*-model, then it has a *T*-model with infinite universe

Example

- LIA, LRA, NIA, NRA are stably infinite
- \cdot UF is stably infinite
- bit-vectors of fixed width are not stably infinite
- strings of bounded length are not stably infinite

Theorem (Nelson-Oppen, 1980) *If* T_1 and T_2 are stably infinite, then the following are equivalent

- 1. φ *is* $(T_1 \oplus T_2)$ -satisfiable,
- 2. *there is an arrangement R of variables C such that* $\varphi_1 \wedge ar_R(C)$ *is T*₁-satisfiable and $\varphi_2 \wedge ar_R(C)$ *is T*₂-satisfiable.

Theorem (Nelson-Oppen, 1980) *If* T_1 and T_2 are stably infinite, then the following are equivalent

- 1. φ *is* $(T_1 \oplus T_2)$ -satisfiable,
- 2. *there is an arrangement R of variables C such that* $\varphi_1 \wedge ar_R(C)$ *is T*₁*-satisfiable and* $\varphi_2 \wedge ar_R(C)$ *is T*₂*-satisfiable.*

Proof (sketch).

- 1 *⇒* 2: straighforward.
- 2 *⇒* 1: get two models *A*¹ and *A*2; use stable infiniteness and upward Löwenheim-Skolem theorem to get elementarily equivalent models *A′* 1 and \mathcal{A}'_2 that have the same cardinality; combine the structures

Algorithm

- 1. Purify the input formula into *φ*¹ *Λ φ*²
- 2. Non-deterministically guess an arrangement *R* of shared variables *C*.
- 3. Check T_1 -satisfiability of $\varphi_1 \wedge ar_B(C)$ and T_2 satisfiability of $\varphi_2 \wedge ar_B(C)$.
- 4. If both are satisfiable, return satisfiable.
- 5. Otherwise return unsatisfiable.

$$
\varphi_{\text{LIA}} = (v_1 \ge 0) \land (v_1 \le 1) \land (v_2 = 0) \land (v_3 = 1)
$$

$$
\varphi_{\text{UF}} = (f(v_1) \ne f(v_2))
$$

Problems

- non-deterministic algorithms are not practical
- if made deterministic, the number of arrangements is exponential with respect to *|C|* (Bell number)

Idea

- do not guess the arrangement, let the *T*-solvers build it together
- *T*1-solver propagates all implied interface equalities (equalities between of shared variables) to *T*₂-solver
- \cdot T_2 -solver propagates all implied interface equalities to T_1 -solver
- \cdot if both solvers T_i decide that the formulas φ_i are satisfiable and do not imply any new equalities, the formula *φ* is satisfiable

Deterministic Nelson-Oppen algorithm

Problem

• Does not work in general

Problem

• Does not work in general

$$
\varphi_{\text{LIA}} = (v_1 \ge 0) \land (v_1 \le 1) \land (v_2 = 0) \land (v_3 = 1)
$$

\n $\varphi_{\text{UF}} = (f(v_1) \ne f(v_2)) \land (f(v_1) \ne f(v_3))$

Convexity

Convex theory

- if $\varphi \models_T \psi \lor \rho$
- \cdot then $\varphi \models_T \psi$ or $\varphi \models_T \rho$

Example

- UF, LRA are convex
- LIA is not convex:

$$
- x \ge 1 \land x \le 2 \models_{\text{LIA}} x = 1 \lor x = 2;
$$

$$
- x \ge 1 \land x \le 2 \not\models_{\text{LIA}} x = 1
$$

$$
- x \ge 1 \land x \le 2 \not\models_{\text{LIA}} x = 2
$$

Deterministic Nelson-Oppen algorithm

Algorithm

- 1. Purify the input formula into $\varphi_1 \wedge \varphi_2$
- 2. For both *i ∈ {*1*,* 2*}*
	- 2.1 Check satisfiability of φ_i by T_i
	- 2.2 Detect all equalities of variables *C* implied by φ_i
	- 2.3 Propagate them to the T_i solver $(i \neq i)$
- 3. If any of the *Ti*-solvers returned unsat, return unsat.
- 4. If no more equalities are propagated, return sat.
- 5. Go to 2.

Sound and complete for stably infinite and convex theories.

- deterministic Nelson-Oppen algorithm works only for convex theories
- complete propagation of equalities can be expensive and complicate the *T*-solver

Delayed theory combination (2005)

Idea

- combine CDCL(T) and non-determinisic Nelson-Oppen algorithm
- use a SAT solver to "guess" the interface equalities and send them to the *Ti*-solvers
- *Ti*-unsatisfiability causes backtracking in the SAT solver *→* try another arrangement

Delayed theory Combination

Benefits

- fits well into CDCL(T) paradigm
- \cdot the T_i solvers can additionally perform theory propagation (but do not have to)

$$
\varphi_{\text{LIA}} = (v_1 \ge 0) \land (v_1 \le 1) \land (v_2 = 0) \land (v_3 = 1)
$$

$$
\varphi_{\text{UF}} = (f(v_1) \ne f(v_2))
$$

Problem

- \cdot delayed theory combination adds $\mathcal{O}(|C|^2)$ atoms to the sat solver
- can slowdown the search

Solution

• be lazy

Algorithm

- 1. Start DTC with empty set of interface equalities.
- 2. If unsatisfiable, return unsatisfiable.
- 3. If satisfiable, check whether the obtained models A_1 and A_2 agree on all interface equalities.
	- 3.1 if they do, return satisfiable
	- 3.2 if they do not and all the interface equalities have been added, return unsatisfiable
	- 3.3 otherwise add the equalities in which they differ to the DTC solver and repeat

Summary of requirements

Non-deterministic Nelson-Oppen

• stably infinite theories

Deterministic Nelson-Oppen

- stably infinite theories
- \cdot T_i solvers that can deduce all implied equalities
- convex theories (or deduce also all disjunctions of equalities)

Delayed Theory Combination (and Model-based TC)

• stably infinite theories

Where are we?

Contents

Propositional satisfiability (SAT)

- (*A ∨ ¬B*) *∧* (*¬A ∨ C*)
- is it satisfiable?

Satisfiability modulo theories (SMT)

- *x* = 1 *∧ x* = *y* + *y ∧ y >* 0
- is it satisfiable over reals?
- is it satisfiable over integers?
- *←* YOU ARE STANDING HERE

Automated theorem proving (ATP)

- axioms: *∀x* (*x* + *x* = 0), *∀x∀y* (*x* + *y* = *y* + *x*)
- \cdot do they imply $\forall x \forall y ((x + y) + (y + x) = 0)$? 37/39
- definition of first-order logic
- definition of first-order theories and satisfiability modulo theories
- theories useful in practice
- CDCL(T) algorithm for solving SMT
- several algorithms for *T*-solvers (UF, difference logic) and ideas of others
- combination of theories
- satisfiability of quantified formulas
- first-order resolution (again)
- first-order superposition (again)