
Introduction to Automated Theorem Proving
IA085: Satisfiability and Automated Reasoning

Martin Jonáš

FI MUNI, Spring 2024



Contents

Propositional satisfiability (SAT)

• (A ∨ ¬B) ∧ (¬A ∨ C)
• is it satisfiable?

Satisfiability modulo theories (SMT)

• x = 1 ∧ x = y + y ∧ y > 0
• is it satisfiable over reals?
• is it satisfiable over integers?

Automated theorem proving (ATP)

• axioms: ∀x (x+ x = 0), ∀x∀y (x+ y = y + x)

• do they imply ∀x∀y ((x+ y) + (y + x) = 0)?
1 / 41



Big change

Today we are dealing with quantifiers!

Today we are not dealing with theories!

2 / 41



Big change

Today we are dealing with quantifiers!

Today we are not dealing with theories!

2 / 41



First-order theorem proving



Problem specification

Input

• a set of hypotheses {H1,H2, . . . , Hk} that are arbitrary closed formulas
• a goal G that is arbitrary closed formula

Problem

• decide whether H1 ∧H2 ∧ . . . ∧Hk |= G

Notes

• not considering any background theory, only interpreted symbol is equality
(theory of UF)

3 / 41



Example

Claim If all elements of a group have order 2, the group is commutative.

Formalization in signature Σ = {=, ·, 1}
Hypotheses

• H1 = ∀x (1 · x = x ∧ x · 1 = x)

• H2 = ∀x∃y (x · y = 1)
• H3 = ∀x∀y∀z ((x · y) · z = x · (y · z))
• H4 = ∀x (x · x = 1)

Goal
• G = ∀x∀y(x · y = y · x)

Task
H1 ∧H2 ∧H3 ∧H4 |= G

4 / 41



Example

Claim If all elements of a group have order 2, the group is commutative.

Formalization in signature Σ = {=, ·, 1}
Hypotheses

• H1 = ∀x (1 · x = x ∧ x · 1 = x)

• H2 = ∀x∃y (x · y = 1)
• H3 = ∀x∀y∀z ((x · y) · z = x · (y · z))
• H4 = ∀x (x · x = 1)

Goal
• G = ∀x∀y(x · y = y · x)

Task
H1 ∧H2 ∧H3 ∧H4 |= G

4 / 41



Proof by refutation

Goal

• prove H1 ∧H2 ∧ . . . ∧Hk |= G

Proof by refutation

• prove H1 ∧H2 ∧ . . . ∧Hk ∧ ¬G is unsatisfiable

5 / 41



Proving unsatisfiability

System I of inference rules

C1 C2 . . . Ck

A

Proof of unsatisfiability of set of formulas Φ is a tree with

• leaves from Φ

• inner nodes corresponding to inference rules
• root ⊥

6 / 41



Demo

7 / 41



Soundness of inferences

Sound inference rule

• if
C1 C2 . . . Ck

A

• then
C1 ∧ C2 ∧ . . . ∧ Ck |= A

8 / 41



Proving unsatisfiability

Important distinction

• Φ is unsatisfiable (Φ |= ⊥)
• Φ can be proven unsatisfiable using the proof system I (Φ ` ⊥)

Soundness

• Φ ` ⊥ implies Φ |= ⊥
• can be proven by proving soundness of each inference rule separately

Refutation completeness

• Φ |= ⊥ implies Φ ` ⊥
• proofs usually much harder

9 / 41



Proving unsatisfiability

Proving unsatisfiability of sets of first-order formulas

• in general undecidable

Challenge for the rest of the lecture

• Is the problem semi-decidable (recursively enumerable)?
• Is its complement semi-decidable (recursively enumerable)?

10 / 41



Proving unsatisfiability

Proving unsatisfiability of sets of first-order formulas

• in general undecidable

Challenge for the rest of the lecture

• Is the problem semi-decidable (recursively enumerable)?
• Is its complement semi-decidable (recursively enumerable)?

10 / 41



Today

Two proof systems

• resolution – sound and refutation complete for formulas without equalities
• superposition – sound and refutation complete for arbitrary formulas (with
or without equalities)

11 / 41



Notation

• variables x, y, z, . . .
• set of variables −→X
• constants c, d (in the Σ-signature, fixed elements of the Σ-structure)
• t[s] = a term t that can contain a subterm s

• given t[s], we denote as t[s2] the result of replacing s in t by s2

12 / 41



Normal forms



Goal

We want to convert the input formula to a conjunctive normal form.

• atomic formula = predicate symbol applied to terms (P (x, f(y), g(c)))
• literal = atomic formula or its negation
• clause = disjunction of literals with all variables quantified universally
(∀x∀y.

(
P (x, f(y), g(c)) ∨Q(y)

)
)

• formula in CNF = conjunction of clauses

13 / 41



Negation normal form

Rationale

• we want to remove existential quantifiers
• some universal quantifiers under negations are in fact existential

Negation Normal Form (NNF)

• negations are applied only to atomic formulas
• the formula does not contain implication (→) and equivalence (↔)

14 / 41



Conversion into NNF

Conversion to NNF

1. rewrite all φ↔ ψ to (φ→ ψ) ∧ (φ← ψ)

2. rewrite all φ→ ψ to ¬φ ∨ ψ
3. apply double negation elimination, De Morgan rules, and quantifier

negations until fixed point
– rewrite ¬¬φ to φ
– rewrite ¬(φ ∧ ψ) to (¬φ) ∨ (¬ψ)
– rewrite ¬(φ ∨ ψ) to (¬φ) ∧ (¬ψ)
– rewrite ¬(∃xφ) to ∀x¬φ
– rewrite ¬(∀xφ) to ∃x¬φ

If the formulas are represented by DAGs, the conversion is linear.
15 / 41



Prenex normal form

Rationale

• we want to move the quantifiers to the top level (to create clauses)

Prenex Normal Form (PNF)

• formula is of form Q1x1Q2x2 . . . Qnxn φ where
• Qi ∈ {∃, ∀}
• φ is quantifier free

16 / 41



Conversion to PNF

Conversion to PNF

1. convert to NNF
2. rename bound variables to unique names
3. apply prenexing rules until fixed point

– rewrite φ ∧ (∀xψ) to ∀x (φ ∧ ψ)
– rewrite φ ∧ (∃xψ) to ∀x (∃ ∧ ψ)
– + symmetric variants

17 / 41



Skolem normal form

Skolem Normal Form (SNF)

• formula is of form ∀x1∀x2 . . . ∀xn φ where
• φ is quantifier free

18 / 41



Conversion to SNF

Conversion to SNF

1. convert to PNF
2. while the formula is of form

∀x1∀x2 . . . ∀xm∃y.φ,

where φ can contain quantifiers, replace y by fy(x1, x2, . . . , xm), where fy is a
new function symbol

19 / 41



Conversion to SNF

The formula skolemize(φ) is in general not equivalent to φ.

• φ = ∀x∃y (x+ y = 0)
• skolemize(φ) = ∀x (x+ f(x) = 0)

Theorem
The formulas φ and skolemize(φ) are equisatisfiable.

20 / 41



Conversion to SNF

The formula skolemize(φ) is in general not equivalent to φ.

• φ = ∀x∃y (x+ y = 0)
• skolemize(φ) = ∀x (x+ f(x) = 0)

Theorem
The formulas φ and skolemize(φ) are equisatisfiable.

20 / 41



Conversion to CNF

Conversion to CNF

1. convert to an equisatisfiable formula in SNF
2. obtain formula ∀−→X φ

3. convert φ to CNF (using distributivity or Tseitin)
4. obtain formula ∀−→X (C1 ∧ C2 ∧ . . . ∧ Ck)

5. obtain a set of formulas (∀−→X1C1) ∧ (∀
−→
X2C2) ∧ . . . (∀

−→
Xk Ck)

(why is this correct?)

21 / 41



Conversion to CNF

Conversion to CNF

1. convert to an equisatisfiable formula in SNF
2. obtain formula ∀−→X φ

3. convert φ to CNF (using distributivity or Tseitin)
4. obtain formula ∀−→X (C1 ∧ C2 ∧ . . . ∧ Ck)

5. obtain a set of formulas (∀−→X1C1) ∧ (∀
−→
X2C2) ∧ . . . (∀

−→
Xk Ck)

(why is this correct?)

21 / 41



Conversion to CNF: improvements

In practice, conversion to full PNF is not needed.

Improvements

• convert to conjunctions of formulas in PNF, or
• convert to NNF, perform skolemization, then convert to conjunctions of
formulas in PNF

Why is this better?

22 / 41



CNF conventions

• clauses = sets of literals
• formulas = sets of clauses
• all variables are universally quantified→ do not write the quantifiers

Example

• (∀P (x)) ∧ (∀y(Q(c1, y) ∨Q(c2, y)))

• {{P (x)}, {Q(c1, y), Q(c2, y)}

23 / 41



Example

Recall the example

• H1 = ∀x (1 · x = x ∧ x · 1 = x)

• H2 = ∀x∃y (x · y = 1)
• H3 = ∀x∀y∀z ((x · y) · z = x · (y · z))
• H4 = ∀x (x · x = 1)
• C = ∀x∀y(x · y = y · x)

What is the CNF of the formula that we are trying to refute?

24 / 41



Saturation based theorem-proving



Saturation algorithm

1. start with the set of formulas Φ (not containing ⊥)
2. while there is an inference rule i ∈ I with premises from Φ and conclusion
A 6∈ Φ

– if A = ⊥, return unsatisfiable
– otherwise set Φ to Φ ∪ {A} and continue

3. otherwise, there are no new inferences to add (the set Φ is saturated)
4. return satisfiable

25 / 41



Soundness and completeness

Theorem
Let I be a sound proof system. If the set of formulas Φ is satisfiable, the
saturation algorithm either returns satisfiable or does not terminate.

Not a theorem
Let I be a complete proof system. If the set of formulas Φ is unsatisfiable, the
saturation algorithm returns unsatisfiable.

Theorem
Let I be a complete proof system. If the set of formulas Φ is unsatisfiable, the
saturation algorithm returns unsatisfiable, given that rule selection is fair.

26 / 41



First-order resolution



Reminder: Propositional resolution

A ∨ C1 ¬A ∨ C2
C1 ∨ C2

In first-order logic, the above rule is still sound, but is not complete.

• {{P (x)}, {¬P (y + z)}} |= ⊥
• {{P (x)}, {¬P (y + z)}} 6` ⊥

Solution

• allow not only exactly matching complementary literals A and ¬A,
• but also literals that can be made complementary by using a suitable
instantiation of universal quantifiers

27 / 41



Reminder: Propositional resolution

A ∨ C1 ¬A ∨ C2
C1 ∨ C2

In first-order logic, the above rule is still sound, but is not complete.

• {{P (x)}, {¬P (y + z)}} |= ⊥
• {{P (x)}, {¬P (y + z)}} 6` ⊥

Solution

• allow not only exactly matching complementary literals A and ¬A,
• but also literals that can be made complementary by using a suitable
instantiation of universal quantifiers

27 / 41



Substitution

Substitution

• a function from variables to terms
• θ = {x 7→ y + 3, y 7→ f(y)}
• not mentioned variables are not changed (θ(z) = z)

Application

• formula φ
• result φθ is result of simultaneous replacement of each x in φ by θ(x)
• (x− y)θ = (y + 3)− f(y)
• analogous tθ for terms

28 / 41



Substitution

Theorem
If C is a clause and θ is a substitution, then C |= Cθ.

Message
If we have a set of clauses Φ, it is safe to apply substitution θ to C ∈ Φ and
assume that Cθ holds.

29 / 41



Unification

Unifier of terms t and s

• substitution θ such that tθ = sθ

• analogous definition for atomic formulas

Examples

• f(g(x), y) and f(z, h(z)) are

unifiable
• f(g(x), y) and f(h(z), h(z)) are not unifiable
• f(f(x)) and f(c) are not unifiable

30 / 41



Unification

Unifier of terms t and s

• substitution θ such that tθ = sθ

• analogous definition for atomic formulas

Examples

• f(g(x), y) and f(z, h(z)) are unifiable
• f(g(x), y) and f(h(z), h(z)) are

not unifiable
• f(f(x)) and f(c) are not unifiable

30 / 41



Unification

Unifier of terms t and s

• substitution θ such that tθ = sθ

• analogous definition for atomic formulas

Examples

• f(g(x), y) and f(z, h(z)) are unifiable
• f(g(x), y) and f(h(z), h(z)) are not unifiable
• f(f(x)) and f(c) are

not unifiable

30 / 41



Unification

Unifier of terms t and s

• substitution θ such that tθ = sθ

• analogous definition for atomic formulas

Examples

• f(g(x), y) and f(z, h(z)) are unifiable
• f(g(x), y) and f(h(z), h(z)) are not unifiable
• f(f(x)) and f(c) are not unifiable

30 / 41



Most-general unifier

Problem

• there are many different unifiers for a given set of pairs
• unifier of x and f(y) can be θ = {x 7→ f(10), y 7→ 10}, which is too specific

Most general unifier of terms t and s

• unifier θ such that every unifier ρ can be obtained as ρ = f ◦ θ for suitable
substitution f

• unique up to isomorphism (variable renaming)
• denoted mgu(t, s)

31 / 41



Resolution rule

A1 ∨ C1 ¬A2 ∨ C2
C1θ ∨ C2θ

if θ = mgu(A1, A2)

Examples

• resolvent of P (x) ∨Q(f(x), y) and ¬P (f(z)) ∨R(g(z, v))

Theorem
The resolution inference rule is sound.

32 / 41



Resolution rule

A1 ∨ C1 ¬A2 ∨ C2
C1θ ∨ C2θ

if θ = mgu(A1, A2)

Examples

• resolvent of P (x) ∨Q(f(x), y) and ¬P (f(z)) ∨R(g(z, v))

Theorem
The resolution inference rule is sound.

32 / 41



Resolution rule

A1 ∨ C1 ¬A2 ∨ C2
C1θ ∨ C2θ

if θ = mgu(A1, A2)

Examples

• resolvent of P (x) ∨Q(f(x), y) and ¬P (f(z)) ∨R(g(z, v))

Theorem
The resolution inference rule is sound.

32 / 41



Resolution rule

Note

• need to allow renaming of bound variables of a clause before resolution
• example: P (x) ; P (y) (sound because ∀xP (x) ≡ ∀y P (y))
• why is this needed?

33 / 41



Resolution proof system

Resolution proof system

• sound for all first-order formulas
• refutation complete for first-order formulas without equality

34 / 41



Superposition calculus



Motivation

Goal

• extend the resolution proof system with rules that reason with equality
• make it refutation complete for all first-order formulas (with or without
equality)

35 / 41



Superposition rule

Naive version (not used)
(l = r) ∨ C1 L[l] ∨ C2

L[r] ∨ C1 ∨ C2

General version
(l = r) ∨ C1 L[s] ∨ C2

(L[r] ∨ C1 ∨ C2)θ
if θ = mgu(l, s)

Purpose

• use the equality for substitution

36 / 41



Superposition rule

Naive version (not used)
(l = r) ∨ C1 L[l] ∨ C2

L[r] ∨ C1 ∨ C2

General version
(l = r) ∨ C1 L[s] ∨ C2

(L[r] ∨ C1 ∨ C2)θ
if θ = mgu(l, s)

Purpose

• use the equality for substitution

36 / 41



Factoring rule

Naive version (not used)
A ∨A ∨ C
A ∨ C

General version
A1 ∨A2 ∨ C
(A ∨ C)θ if θ = mgu(A1, A2)

Purpose

• remove duplicate literals

37 / 41



Factoring rule

Naive version (not used)
A ∨A ∨ C
A ∨ C

General version
A1 ∨A2 ∨ C
(A ∨ C)θ if θ = mgu(A1, A2)

Purpose

• remove duplicate literals

37 / 41



Equality resolution rule

Naive version (not used)
(x 6= x) ∨ C

C

General version
(s 6= t) ∨ C

Cθ
if θ = mgu(s, t)

Purpose

• remove disequalities

38 / 41



Equality factoring rule

Naive version (not used)
(s = t) ∨ (s = t′) ∨ C
(s = t) ∨ (t 6= t′) ∨ C

General version
(s = t) ∨ (s′ = t′) ∨ C
((s = t) ∨ (t 6= t′) ∨ C)θ

if θ = mgu(s, s′)

Purpose

• case split on s = t and s 6= t

39 / 41



Superposition calculus

Superpositon calculus

• inference system with rules: resolution, superposition, factoring, equality
resolution, and equality factoring rules

• sound for arbitrary first-order formulas
• refutationally complete for arbitrary first-order formulas (with or without
equalities)

40 / 41



Next time

• SMT with quantifiers
• quantifier instantiation

41 / 41


	First-order theorem proving
	Normal forms
	Saturation based theorem-proving
	First-order resolution
	Superposition calculus

