Introduction to Automated Theorem Proving
IA085: Satisfiability and Automated Reasoning

Martin Jonas

FI MUNI, Spring 2024

Automated theorem proving (ATP)

- axioms: Vz (x +x =0), VaVy (z +y =y +)
- do they imply VaVy ((z + y) + (y + x) = 0)?
1/ 41

Today we are dealing with quantifiers!

2/m

Today we are dealing with quantifiers!

Today we are not dealing with theories!

2/m

First-order theorem proving

Problem specification

Input

- a set of hypotheses { Hq, Hy, ..., Hy} that are arbitrary closed formulas
- a goal G that is arbitrary closed formula

Problem

- decide whether Hy AHy A ... ANHg =G

Notes

- not considering any background theory, only interpreted symbol is equality
(theory of UF)

3/m

Claim If all elements of a group have order 2, the group is commutative.

41m

Claim If all elements of a group have order 2, the group is commutative.

Formalization in signature X = {=, -, 1}
Hypotheses

- Hi=Vz(l-z=z AN z-1=2x)
- Hy=Vzdy(z-y=1)
CHy =VaVyVz ((z-y) - z=2-(y-2))
- Hy,=Vz(z-x2=1)
Goal
- G=VaVylz-y=y-x)

Task

HiNH,NH3; NH, =G
4] 41

Proof by refutation

Goal

- prove F{ANH;N...NHy =G

Proof by refutation

- prove HHAHy A ... NH A =G is

5/

Proving unsatisfiability

System I of

i Gy ... Cg

Proof of unsatisfiability of set of formulas @ is a tree with

- leaves from @
- inner nodes corresponding to inference rules
- root L

6/

7/®

Soundness of inferences

Sound inference rule

- if
. Oy ... Cy

- then
01/\02/\.../\Ck}:A

8/ 41

Proving unsatisfiability

Important distinction

o (@ L)
) using the proof system I (® - L)

Soundness

- ®F Limplies® | L
- can be proven by proving soundness of each inference rule separately

Refutation completeness

- ® = L implies®kF L
- proofs usually much harder
9/

Proving unsatisfiability

Proving unsatisfiability of sets of first-order formulas

- In general

10 / 41

Proving unsatisfiability

Proving unsatisfiability of sets of first-order formulas

- In general

Challenge for the rest of the lecture

- Is the problem semi-decidable (recursively enumerable)?

- Is its complement semi-decidable (recursively enumerable)?

10 / 41

Two proof systems

- resolution - sound and refutation complete for formulas without equalities

- superposition - sound and refutation complete for arbitrary formulas (with
or without equalities)

1/®

- variables z,y, z, . ..

- set of variables X

- constants ¢, d (in the X-signature, fixed elements of the X-structure)
- t[s] = a term t that can contain a subterm s

- given t[s], we denote as t[s;] the result of replacing s in ¢ by s,

12/ 41

Normal forms

We want to convert the input formula to a

- atomic formula = predicate symbol applied to terms (P(z, f(y), g(c)))
- literal = atomic formula or its negation

- clause = disjunction of literals with
(V2¥y. (P(z, f(y),9(c) V Q(y)))

- formula in cNF = conjunction of clauses

13/ 41

Negation normal form

Rationale

- we want to remove existential quantifiers

- some universal quantifiers under negations are in fact existential

Negation Normal Form (NNF)

- negations are applied only to atomic formulas

- the formula does not contain implication (—) and equivalence (+»)

14/ ;1

Conversion into NNF

Conversion to NNF

1. rewrite all ¢ > ¥ t0 (p = ¥) A (¢ + V)
2. rewrite all ¢ — ¢ to = V ¢

3. apply double negation elimination, De Morgan rules, and quantifier
negations until fixed point
- rewrite ==p to ¢
- rewrite =(p A) 1o (—¢) V (=)
- rewrite =(¢ V ¥) to (mp) A (—1))
- rewrite =(3z) to Vo —¢
- rewrite =(Vx ¢) to 3z —p

If the formulas are represented by DAGs, the conversion is linear.
15/ 41

Prenex normal form

Rationale

- we want to move the quantifiers to the top level (to create clauses)

Prenex Normal Form (PNF)

- formula is of form Qix1Qx3 . . . Qpx, 0 Where
- Qie{3,v)

- is quantifier free

16 / 41

Conversion to PNF

Conversion to PNF

1. convert to NNF

2. rename bound variables to unique names
3. apply prenexing rules until fixed point

- rewrite p A (Vz¢) to Vz (p A)
- rewrite ¢ A (Fx) to Va (I A)
- +symmetric variants

17/ 41

Skolem normal form

Skolem Normal Form (SNF)

- formula is of form Va4V, ... Va, ¢ where

- pis quantifier free

18 / 41

Conversion to SNF

Conversion to SNF

1. convert to PNF

2. while the formula is of form
VziVry ... Ve,Jy.o,

where ¢ can contain quantifiers, replace y by fy(x1,22,...,2m), Where f, isa
new function symbol

19/

Conversion to SNF

The formula skolemize(p) is in general to .

cpo=VzIy(z+y=0)
- skolemize(p) = Vx (z + f(z) = 0)

20/ 41

Conversion to SNF

The formula skolemize(p) is in general to .

cpo=VzIy(z+y=0)
- skolemize(p) = Vx (z + f(z) = 0)

Theorem
The formulas ¢ and skolemize(yp) are

20/ 41

Conversion to CNF

Conversion to CNF

1. convert to an equisatisfiable formula in SNF
obtain formula v?go
convert ¢ to cNF (using distributivity or Tseitin)
obtain formula sz (CTACIN...NCY)
. — — —
obtain a set of formulas (VX1 Cy) A (VX2 Cy) A ... (VX Cy)

i & @

21/ 41

Conversion to CNF

Conversion to CNF

1. convert to an equisatisfiable formula in SNF
obtain formula v?go

convert ¢ to cNF (using distributivity or Tseitin)
obtain formula sz (CTACIN...NCY)

obtain a set of formulas (wﬁ Ch) A (W?E Cy) A ... (W?;: Ck)
(why is this correct?)

i & @

21/ 41

Conversion to CNF: improvements

In practice, conversion to full PNF is not needed.

Improvements

- convert to conjunctions of formulas in PNF, or

- convert to NNF, perform skolemization, then convert to conjunctions of
formulas in PNF

Why is this better?

22 [41

CNF conventions

- clauses = sets of literals
- formulas = sets of clauses

- all variables are universally quantified — do not write the quantifiers

Example

* (VP(z)) A (Vy(Q(er,y) vV Qe2,9)))
- {P@)},{Q(er,9), Q(c2,y)}

23/ 41

Recall the example
cHi=Vz(l-z=z AN z-1=2x)
- Hy=VaIy(z-y=1)
CHy =VaVyVz ((z-y) - z=2-(y-2))
- Hy=Vx(z-x=1)
- C=VaVylx-y=y-x)

What is the cNF of the formula that we are trying to refute?

24 [41

Saturation based theorem-proving

Saturation algorithm

1. start with the set of formulas ® (not containing L)

2. while there is an inference rule i € T with premises from ® and conclusion
Add
- if A= 1, return unsatisfiable
- otherwise set ® to ® U {A} and continue

3. otherwise, there are no new inferences to add (the set @ is)

4. return satisfiable

25/ 41

Soundness and completeness

Theorem . .
Let T be a sound proof system. If the set of formulas ® is satisfiable, the

saturation algorithm either returns satisfiable or does not terminate.

Not a theorem _ .
Let T be a complete proof system. If the set of formulas ® is unsatisfiable, the

saturation algorithm returns unsatisfiable.

Theorem ' .
Let T be a complete proof system. If the set of formulas ® is unsatisfiable, the

saturation algorithm returns unsatisfiable,

26 /41

First-order resolution

Reminder: Propositional resolution

AVvC, —-AV (O,
Chv Oy

In first-order logic, the above rule is still sound, but is not complete.

“{P@)} {=Py+2)}} =L
“{P@)} {-Py+2)}} 1/ L

27 [m

Reminder: Propositional resolution

AVvC, —-AV (O,
Chv Oy

In first-order logic, the above rule is still sound, but is not complete.

“{P@)} {=Py+2)}} =L
“{P@)} {-Py+2)}} 1/ L

Solution

- allow not only exactly matching complementary literals A and —A,
- but also literals that can be made complementary by

27 [m

Substitution

Substitution

- a function from variables to terms
c0={z—=y+3y— f(y)}
- not mentioned variables are not changed (6(z) = z)

Application

- formula ¢

- result @6 is result of replacement of each x in ¢ by 6(x)

-yl =uy+3)-fy)
- analogous t6 for terms

28 [11

Substitution

Theorem
If C'is a clause and @ is a substitution, then C' = C6.

Message

If we have a set of clauses @, it is safe to apply substitution 8 to C' € ® and
assume that C'0 holds.

29 [41

Unifier of terms ¢ and s

- substitution @ such that t0 = s6

- analogous definition for atomic formulas

Examples

- f(g(z),y) and f(z, h(z)) are

30/ 41

Unifier of terms ¢ and s

- substitution @ such that t0 = s6

- analogous definition for atomic formulas

Examples

- f(g(z),y) and f(z, h(z)) are unifiable
- flg(x),y) and f(h(z),h(z)) are

30/ 41

Unifier of terms ¢ and s

- substitution @ such that t0 = s6

- analogous definition for atomic formulas

Examples

- f(g(z),y) and f(z, h(z)) are unifiable
- f(g(x),y) and f(h(z), h(z)) are not unifiable
-« f(f(z)) and f(c) are

30/ 41

Unifier of terms ¢ and s

- substitution @ such that t0 = s6

- analogous definition for atomic formulas

Examples

- f(g(z),y) and f(z, h(z)) are unifiable
- f(g(x),y) and f(h(z), h(z)) are not unifiable
- f(f(x)) and f(c) are not unifiable

30/ 41

Most-general unifier

Problem

- there are many different unifiers for a given set of pairs
- unifier of z and f(y) can be § = {x — f(10),y — 10}, which is too specific

Most general unifier of terms ¢ and s

- unifier # such that every unifier p can be obtained as p = f o for suitable
substitution f
- unique up to isomorphism (variable renaming)

- denoted mgu(t, s)

31/ 41

Resolution rule

A v Cy AV (O,
Ch0 v C,0

if & = mgu(A44, Ay)

32/ 41

Resolution rule

A v Cy AV (O,
Ch0 v C,0

if & = mgu(A44, Ay)

Examples

- resolvent of P(z) vV Q(f(z),y) and =P(f(z)) V R(g(z,v))

32/ 41

Resolution rule

A v Cy AV (O,
Ch0 v C,0

if & = mgu(A44, Ay)

Examples

- resolvent of P(z) vV Q(f(z),y) and =P(f(z)) V R(g(z,v))

Theorem .
The resolution inference rule is sound.

32/ 41

Resolution rule

Note

- need to allow renaming of bound variables of a clause before resolution
- example: P(x) ~ P(y) (sound because Vx P(x) = Vy P(y))
- why is this needed?

33/ 41

Resolution proof system

Resolution proof system

- sound for all first-order formulas

- refutation complete for first-order formulas without equality

34/ 4

Superposition calculus

Goal

- extend the resolution proof system with rules that reason with equality

- make it refutation complete for all first-order formulas (with or without
equality)

35/ 41

Superposition rule

Naive version (not used)
(=r)VvC L{VGC

Llr]v CiVv

36/ 41

Superposition rule

Naive version (not used)
(=r)VvC L{VGC

Llr]v CiVv

General version

(=r)VC L[|V

_(L[T] v CiV 02)9

if 0 = mgu(l, s)

Purpose

- use the equality for substitution

36/ 41

Factoring rule

Naive version (not used)
AVAVC

AvC

37/ 4

Factoring rule

Naive version (not used)
AVAVC

AvC

General version
AVAVC

(Av O if 0 = mgu(A41, Az)

Purpose

- remove duplicate literals

37/ 4

Equality resolution rule

Naive version (not used)

(x#z)VvVC
@]
General version -
V .
£Hve if 6 = mgu(s,t)

co

Purpose

- remove disequalities

38/ 41

Equality factoring rule

Naive version (not used)

General version
(s=t)yv(s=t)vC

(s=t)vV(t#t)v()

7 if & = mgu(s, s)

Purpose

- casesplitons=tand s #t

39/ 4

Superposition calculus

Superpositon calculus

- inference system with rules: resolution, superposition, factoring, equality
resolution, and equality factoring rules

for arbitrary first-order formulas

for arbitrary first-order formulas (with or without
equalities)

40/ 41

- SMT with quantifiers
- quantifier instantiation

41/ 4

	First-order theorem proving
	Normal forms
	Saturation based theorem-proving
	First-order resolution
	Superposition calculus

