IA169 Model Checking

Automata-based LTL model checking

Jan Strejcek

Faculty of Informatics
Masaryk University

Automata-based LTL model checking

system K specification formula ¢
! I
automaton Ak automaton A-,
representing runs of K representing runs violating ¢

\ /

Do Ak and A-, represent
disjoint sets of runs?

— ~

YES, NO + counterexample,
all runs of K satisfy ¢ i.e. arun of K violating ¢

|1A169 Model Checking: Automata-based LTL model checking 2/130

Agenda and sources

agenda
m formalization of the state-based LTL model checking problem:
(fair) Kripke structure and LTL
m Bichi automata (BA) and generalized Blichi automata (GBA)
m transformation of finite (fair) Kripke structures to (G)BA
m translation of LTL to BA via self-loop alternating automata
m algorithms checking disjointness of Ax and A-,
m algorithm based on SCC decomposition

m nested DFS algorithm
m optimizations

m action-based version of LTL model checking

sources
m Chapter 7 of E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith:
Model Checking, Second Edition, MIT, 2018.
m M. Y. Vardi: An Automata-Theoretic Approach to Linear Temporal Logic,
LNCS 1043, Springer, 1995.

|1A169 Model Checking: Automata-based LTL model checking 3/130

Formalization of the state-based LTL model checking problem

Atomic propositions

atomic propositions
m basic observable properties of each state of the system
m for example: x > y + 10, z is even, gate is open, program is at line 10

m the validity of each atomic proposition in each state of the system has to be
fully determined by the state

m specification talks only about validity of atomic proposition during system runs
m AP denotes a countable set of atomic propositions

|1A169 Model Checking: Automata-based LTL model checking 5/130

Atomic propositions

atomic propositions
m basic observable properties of each state of the system
m for example: x > y + 10, z is even, gate is open, program is at line 10

m the validity of each atomic proposition in each state of the system has to be
fully determined by the state

m specification talks only about validity of atomic proposition during system runs
m AP denotes a countable set of atomic propositions

m basic formalism for state-based systems is a Kripke structure

|1A169 Model Checking: Automata-based LTL model checking 6/130

Kripke structure

Definition (Kripke structure)

A Kripke structure is atuple K = (S, T, Sp, L), where
m Sis a set of states,
m T C S x Sis atransition relation,
m Sy C Sis aset of initial states,
m L: S — 24P s alabeling function associating to each state s € S the set of
atomic propositions that are true in s.

7/130

|1A169 Model Checking: Automata-based LTL model checking

Kripke structure

Definition (Kripke structure)

A Kripke structure is atuple K = (S, T, Sp, L), where
m Sis a set of states,
m T C S x Sis atransition relation,
m Sy C Sis aset of initial states,
| |

L: S — 24P is a labeling function associating to each state s € S the set of
atomic propositions that are true in s.

Kripke structures are typically described in an implicit way
formats for implicit description typically offer

B programs, processes, finite-state machines

m synchronous or asynchronous composition

m communication and synchronization mechanisms

®m nondeterminism or inputs

|1A169 Model Checking: Automata-based LTL model checking 8/130

Example in the modelling language DVE

channel {byte} c[0];

process A {
G @
state q1,92,93;
initgq1;

trans
g1—q2 { effect a=a+1; },
g2—q3 { effect a=a+1; },

g3—q1 { sync cla; effect a=0; };
1

process B {
byte b,x; @
state p1,p2,p3,p4;

init p1;

trans @
p1—p2 { effect b=b+1; },

p2—p3 { effect b=b+1; },

p3—p4 { sync c?x; },
p4—p1 { guard x==b; effect b=0, x=0; };
}

system async; @

|1A169 Model Checking: Automata-based LTL model checking 9/130

Example of a simple mutual exclusion system

cobegin Py | P; coend

Py Iy: while true do
NCy: wait (turn = 0);
CRy: turn =1
end while

Py:: i while true do
NC;: wait (furn = 1);
CR;: turn:=0
end while

assume that turnis initially 0 or 1

|1A169 Model Checking: Automata-based LTL model checking 10/130

Example of a simple mutual exclusion system

cobegin Py | P; coend

Py Iy: while true do
NCy: wait (turn = 0);
CRy: turn =1

end while Cj[

Py:: i while true do
NC;: wait (furn = 1);
CR;: turn:=0
end while

assume that turnis initially 0 or 1

11/130

|1A169 Model Checking: Automata-based LTL model checking

Run of a Kripke structure

Definition (run)

Let K = (S, T, Sy, L) be a Kripke structure. A run of K is an infinite sequence
T = $951S2 ... Of states such that s, € Sy and (s;, s;11) € T holds for each i > 0.

|1A169 Model Checking: Automata-based LTL model checking 12/130

Run of a Kripke structure

Definition (run)

Let K = (S, T, Sy, L) be a Kripke structure. A run of K is an infinite sequence
T = $951S2 ... Of states such that s, € Sy and (s;, s;11) € T holds for each i > 0.

m linear time model checking decides whether all runs satisfy the specification
m the set of infinite sequences of states is denoted by S*

m to consider also finite runs, we can define a run as a maximal sequence
T = S9S81S2--- € ST U S¥ of successive states starting in an initial state,
where maximal means infinite or ending in a state without any successor

m it is usually assumed that there are no states without any successors: any
system can be transformed to this form by adding self-loops to such states

|1A169 Model Checking: Automata-based LTL model checking 13/130

Linear temporal logic (LTL)

Definition (linear temporal logic, LTL)

Formulae of Linear Temporal Logic (LTL) are defined by

pu=T|al|-p|eprAp2| Xp | p1Uep2

where T stands for true and a ranges over a countable set AP.

|1A169 Model Checking: Automata-based LTL model checking 14/130

Linear temporal logic (LTL)

Definition (linear temporal logic, LTL)

Formulae of Linear Temporal Logic (LTL) are defined by
pu=Tal| | erAp2 | Xp | prUps

where T stands for true and a ranges over a countable set AP.

abbreviations and alternative notation

Bl =T B Qp = Xp
VY = =(mpA-) mFp = 0p = TUyp
Bp=19Y = VY mGp = Op = —-F-p

By =p=>9pANp<=

|1A169 Model Checking: Automata-based LTL model checking 15/130

Intuitive semantic of LTL

operator name intuitive meaning
Xa next ed e o o ...
aub until aa...abee o ...
Fa eventually oo ... 030 0 o ...
Ga always or globally aaaa...

|1A169 Model Checking: Automata-based LTL model checking 16/130

Semantics of LTL

m we interpret LTL on infinite words w = w(0)w(1)... € (24P)~
m by w; we denote the suffix of w of the form w(i\)w(i + 1)w(i+2)...

|1A169 Model Checking: Automata-based LTL model checking 17/130

Semantics of LTL

m we interpret LTL on infinite words w = w(0)w(1)... € (24P)~
m by w; we denote the suffix of w of the form w(i\)w(i + 1)w(i+2)...

The relation w = ¢, meaning that w satisfies ¢, is defined inductively as follows.

wgET

wEa iff
wk-p ff
W o1 Ao iff
w = X iff
W @1 Uy iff

ac w(0)
W~ ¢
W1 AW @

Wi = ¢
3/20W,)Z<p2/\V0§j<IWI):<p1

|1A169 Model Checking: Automata-based LTL model checking 18/130

Semantics of LTL

m we interpret LTL on infinite words w = w(0)w(1)... € (24P)~
m by w; we denote the suffix of w of the form w(i\)w(i + 1)w(i+2)...

The relation w = ¢, meaning that w satisfies ¢, is defined inductively as follows.

wgET

wEa iff
wk-p ff
W o1 Ao iff
w = X iff
W @1 Uy iff

ac w(0)
W~ ¢
W1 AW @

Wi = ¢
3/20W,)Z<p2/\V0§j<IWI):<p1

By AP(y) we denote the set of atomic propositions appearing in .
The language of ¢ is defined as L(¢) = {w € ¥ | w |= ¢}, where ¥ = 24P(¢),

|1A169 Model Checking: Automata-based LTL model checking 19/130

The goal of LTL model checking

Definition

Let K = (S, T, Sy, L) be a Kripke structure and ¢ be an LTL formula.

Arun = 59815z ... of K satisfies ¢, written 7 = o, if L(So)L(81)L(S2) ... = .
K satisfies ¢, written K |= ¢, if m = ¢ holds for every run = of K.

|1A169 Model Checking: Automata-based LTL model checking 20/130

The goal of LTL model checking

Definition

Let K = (S, T, Sy, L) be a Kripke structure and ¢ be an LTL formula.

Arun = 59815z ... of K satisfies ¢, written 7 = o, if L(So)L(81)L(S2) ... = .
K satisfies ¢, written K |= ¢, if m = ¢ holds for every run = of K.

Given a Kripke structure K and an LTL formula ¢, the goal of LTL model checking
is to decide whether K |= ¢ or not. In the negative case, model checking should
provide a counterexample, i.e., a run = of K such that = = ¢.

|1A169 Model Checking: Automata-based LTL model checking 21/130

which formulae are satisfied?
| Gﬁ(CRO A CR1)
m GFturn =0 A GFturn =1

|1A169 Model Checking: Automata-based LTL model checking 22/130

Extension with fairness

m fairness allows to add additional restrictions on the system runs
m can reflect properties of process schedulers

|1A169 Model Checking: Automata-based LTL model checking 23/130

Extension with fairness

m fairness allows to add additional restrictions on the system runs
m can reflect properties of process schedulers

Definition (fair Kripke structure)

A fair Kripke structure is a tuple K = (S, T, Sy, L, F), where (S, T, Sp, L) is a
Kripke structure and F = {F4, F», ..., Fy} is a finite set of fairness constraints such
that F; C Sforeach 1 </ <n.

A sequence m = 595152 € S¥ is called a fair run of K ifitis a run of (S, T, Sp, L)
and it visits each F; € F infinitely often, i.e., s; € F; for infinitely many ;.

K fairly satisfies an LTL formula ¢, written K =¢ ¢, if each fair run of K satisfies .

|1A169 Model Checking: Automata-based LTL model checking 24/130

Extension with fairness

m fairness allows to add additional restrictions on the system runs
m can reflect properties of process schedulers

Definition (fair Kripke structure)

A fair Kripke structure is a tuple K = (S, T, Sy, L, F), where (S, T, Sp, L) is a
Kripke structure and F = {F4, F», ..., Fy} is a finite set of fairness constraints such
that F; C Sforeach 1 </ <n.

A sequence m = 595152 € S¥ is called a fair run of K ifitis a run of (S, T, Sp, L)
and it visits each F; € F infinitely often, i.e., s; € F; for infinitely many ;.

K fairly satisfies an LTL formula ¢, written K =¢ ¢, if each fair run of K satisfies .

m add reasonable fairness constraint to the mutual exclusion system

|1A169 Model Checking: Automata-based LTL model checking 25/130

Blchi automata (BA) and generalized Blchi automata (GBA)

Blchi automaton (BA)

Definition (Buchi automaton, BA)

A Bichi automaton (BA) is a tuple A= (Q, %, 0, Qu, F), where
m Qis afinite set of states,
m Y is a finite alphabet,
m 5 C Qx X x Qis a transition relation,
m Q) C Qis a set of initial states,
m F C Qis a set of accepting states.

|1A169 Model Checking: Automata-based LTL model checking 27/130

Blchi automaton (BA)

Definition (Buchi automaton, BA)
A Bichi automaton (BA) is a tuple A= (Q, %, 0, Qu, F), where

m Qis afinite set of states,
m Y is a finite alphabet,
m 5 C Qx X x Qis a transition relation,
m Q) C Qis a set of initial states,
m F C Qis a set of accepting states.
| a
m we write p > g instead of (p,a,q) € & b m a
b

|1A169 Model Checking: Automata-based LTL model checking 28/130

Blchi automaton (BA)

m for an arbitrary infinite sequence o, by inf(o) we denote the set of its elements
that appear infinitely often in o

|1A169 Model Checking: Automata-based LTL model checking 29/130

Blchi automaton (BA)

m for an arbitrary infinite sequence o, by inf(o) we denote the set of its elements
that appear infinitely often in o

Definition (run, language)

Let A=(Q,%,0,Qy, F) be a BA.

A run of A over an infinite word w = aja, ... € ¥ is a sequence of states

T = 851... € Q¥ satisfying sp € Qy and s;_1 & sjforeach i > 1.

A run 7 is accepting if inf() N F # ().

A word w € ¥¥ is accepted by A if there exists an accepting run of A over w.
A language represented by A is the set L(A) C X“ of words accepted by A.

|1A169 Model Checking: Automata-based LTL model checking 30/130

Blchi automaton (BA)

m for an arbitrary infinite sequence o, by inf(o) we denote the set of its elements
that appear infinitely often in o

Definition (run, language)

Let A=(Q,%,0,Qy, F) be a BA.

A run of A over an infinite word w = aja, ... € ¥ is a sequence of states

T = 851... € Q¥ satisfying sp € Qy and s;_1 & sjforeach i > 1.

A run 7 is accepting if inf() N F # ().

A word w € ¥¥ is accepted by A if there exists an accepting run of A over w.
A language represented by A is the set L(A) C X“ of words accepted by A.

l a
be()_ (Ooa LA ={we{ab}|acinf(w)}
b

|1A169 Model Checking: Automata-based LTL model checking 31/130

Properties of Blichi automata

m languages represented by Blchi automata are called w-regular

m the class of w-regular languages is closed under U, N, and complement
(though complementation of Biichi automata is highly non-trivial)

m deterministic Blchi automata are less expressive than nondeterministic ones:
for example {a, b}*.{b}* cannot be described by any deterministic BA

abe() —2-ob L(A) = {a,b}".{b}*

|1A169 Model Checking: Automata-based LTL model checking 32/130

Properties of Blichi automata

m languages represented by Blchi automata are called w-regular

m the class of w-regular languages is closed under U, N, and complement
(though complementation of Biichi automata is highly non-trivial)

m deterministic Blchi automata are less expressive than nondeterministic ones:
for example {a, b}*.{b}* cannot be described by any deterministic BA

abe() —2-ob L(A) = {a,b}".{b}*

m the class of languages represented by deterministic Blichi automata is not
closed under complement

L(B) ={w e {a b} | acinf(w)}
b0 (Oea L(B) = {a,b}* ~ L(A)
b

|1A169 Model Checking: Automata-based LTL model checking 33/130

Generalized Blchi automaton (GBA)

Definition (generalized Buichi automaton, GBA)

A generalized Blichi automaton (GBA) is a tuple A= (Q, X, 4, Qp, F), Wwhere
Q, %, 4, Qy have the same meaning as in BA and 7 = {Fq,..., Fp} is afinite set of
accepting sets satisfying F; C Q for each F; € F.

The definition of run is the same as for BA.
A run 7 is accepting if for each F; € F it holds inf(7) N F; # (.
The definition of an accepted word and language is the same as for BA.

|1A169 Model Checking: Automata-based LTL model checking 34/130

Generalized Blchi automaton (GBA)

Definition (generalized Buichi automaton, GBA)

A generalized Blichi automaton (GBA) is a tuple A= (Q, X, 4, Qp, F), Wwhere
Q, %, 4, Qy have the same meaning as in BA and 7 = {Fq,..., Fp} is afinite set of
accepting sets satisfying F; C Q for each F; € F.

The definition of run is the same as for BA.
A run 7 is accepting if for each F; € F it holds inf(7) N F; # (.
The definition of an accepted word and language is the same as for BA.

m each BA (Q,%,0, Qy, F) can be seen as a GBA (Q, X, 5, @y, {F})
m each GBA can be transformed into a BA representing the same language
m GBAs can be more succinct

|1A169 Model Checking: Automata-based LTL model checking 35/130

Transformation of finite (fair) Kripke structures to (G)BA

Kripke structure — BA

m since now on, we consider only Kripke structures K with finitely many states

m assume that we know the set AP(y), which is always finite
?
m when deciding K |= ¢, we can ignore atomic propositions outside AP()

m we transform K into a Biichi automaton Ak with alphabet ¥ = 2AP(¥)
representing the language

LE ={a@ajaz... € ¥¥| there exists a run sps1s;... of K such that
a; = L(s;) N AP(yp) for each i > 0}

corresponding to runs of K projected to AP(yp)

|1A169 Model Checking: Automata-based LTL model checking 37/130

Kripke structure — BA

input: a set AP(y) and a Kripke structure K = (S, T, Sp, L)
output: a BA Ax = (S,24FP(¥) 5, Sy, S) representing L, where ¥ = 24P(¢)

mi={(p,aq)|(pq)eTanda=L(p)NAP(p)}

|1A169 Model Checking: Automata-based LTL model checking 38/130

Kripke structure — BA

input: a set AP(y) and a Kripke structure K = (S, T, Sp, L)
output: a BA Ax = (S,24FP(¥) 5, Sy, S) representing L, where ¥ = 24P(¢)

mi={(p,aq)|(pq)eTanda=L(p)NAP(p)}

—{ 9 =)

[Ll —) APl

|
CO=EN

|1A169 Model Checking: Automata-based LTL model checking 39/130

Kripke structure — BA

input: a set AP(y) and a Kripke structure K = (S, T, Sp, L)
output: a BA Ax = (S,24FP(¥) 5, Sy, S) representing L, where ¥ = 24P(¢)

mi={(p.aq)|(pq) e Tanda=L(p)nAP(p)}

—{ 9 =)

[Ll —) APl

|
CO=EN

|1A169 Model Checking: Automata-based LTL model checking 40/130

Fair Kripke structure — GBA

m similarly, we transform a fair Kripke structure K into a generalized Buchi
automaton Ak with alphabet ¥ = 24P(¥) representing the language

L§ ={apaiaz... € X¥| there exists a fair run sps1s; ... of K such that
aj = L(sj) N AP(p) foreach i > 0}

|1A169 Model Checking: Automata-based LTL model checking 41/130

Fair Kripke structure — GBA

m similarly, we transform a fair Kripke structure K into a generalized Buchi
automaton Ak with alphabet ¥ = 24P(¥) representing the language

L§ ={apaiaz... € X¥| there exists a fair run sps1s; ... of K such that
aj = L(s;)) N AP(p) for each i > 0}

input: a set AP(y) and a fair Kripke structure K = (S, T, Sy, L, F)
output: a GBA Ak = (S,24P(¥) §, Sy, F) representing L%, where ¥ = 24P(¢)

mi={(p,aq)|(pq) e Tanda=L(p)NAP(p)}

|1A169 Model Checking: Automata-based LTL model checking 42/130

Translation of LTL to BA via self-loop alternating automata

LTL — BA translations in general

m translates an LTL formula ¢ into a BA A, accepting L(y)
m many LTL — BA translations

m LTL — GBA — BA (Spin)
m LTL — transition-based GBA (TGBA) — BA (Spot)
m LTL — self-loop alternating BA — TGBA — BA (LTL2BA, LTL3BA)
m LTL — self-loop alternating BA — BA

]

m translations via self-loop alternating automata offer

m size-reducing optimizations of self-loop alternating automata
m smaller resulting BA (in some cases)

|1A169 Model Checking: Automata-based LTL model checking 44/130

Translation of LTL to BA via self-loop alternating automata

Alternating automata

Positive Boolean formulae

Definition (positive boolean formulae)

Positive Boolean formulae over set Q, denoted with 57 (Q), are defined by

o =T | L]qg] @1Ap2 | o1V

where T stands for true, L stands for false, and q ranges over Q.

|1A169 Model Checking: Automata-based LTL model checking 46/130

Positive Boolean formulae

Definition (positive boolean formulae)

Positive Boolean formulae over set Q, denoted with 57 (Q), are defined by

o =T | L]qg] @1Ap2 | o1V

where T stands for true, L stands for false, and q ranges over Q.

S C Qisamodelof p <= the valuation assigning true just
to elements of S satisfies ¢

Sis a minimal model of ¢ <= S is a model of ¢ and no proper
(written S |= ¢) subset of Sis a model of ¢

|1A169 Model Checking: Automata-based LTL model checking 47/130

Examples of positive Boolean formulae

formulae of BT ({p,q,r}) | (minimal) models
1 no model
T 0, {p}, {q}; {r}. {p,q}, ...
pAQg {p,a}, {p,q,r}
pV(qATr) ehAp.at {p,ry {g.r}, {p,q,r}
pA(QVr) {p.gy, {p.r}, {p,q,r}

|1A169 Model Checking: Automata-based LTL model checking 48/130

Examples of positive Boolean formulae

formulae of BT ({p,q,r}) | (minimal) models
1 no model
T 0, {p}, {q}; {r}. {p,q}, ...
pAQg {p,a}, {p,q,r}
pV(qATr) ehAp.at {p,ry {g.r}, {p,q,r}
pA(QVr) {p.gy, {p.r}, {p,q,r}

m minimal models correspond to clauses in disjunctive normal form
(without superfluous clauses)

v = V(AP

SEe peS

|1A169 Model Checking: Automata-based LTL model checking 49/130

Alternating Blchi automaton

Definition (alternating Blchi automaton)

An alternating Biichi automaton is a tuple A= (Q, %, §, Qy, F), where
m Qs a finite set of states,
m X is a finite alphabet,
mJ: Qx X — BY(Q)is a transition function,
m (@ C Qis a set of initial states,
m F C Qis a set of accepting states.

|1A169 Model Checking: Automata-based LTL model checking 50/130

HGES

Definition (tree, Q-labeled tree)

Atreeisaset T C Njsuchthatif xc € T, where x € Nj and ¢ € Np, then also
m xcTand
mxceTforallO<c < c.

|1A169 Model Checking: Automata-based LTL model checking 51/130

HGES

Definition (tree, Q-labeled tree)

Atreeisaset T C Njsuchthatif xc € T, where x € Nj and ¢ € Np, then also
m xcTand
mxceTforallO<c < c.

0/1»3 T=1s

UV N

00 01 20 21 22

0,1,2,3,00,01,
20,21,22,210}

210

|1A169 Model Checking: Automata-based LTL model checking 52/130

HGES

Definition (tree, Q-labeled tree)

Atreeisaset T C Njsuchthatif xc € T, where x € Nj and ¢ € Np, then also
mxecTand
mxceTforall0<c <ec.

A Q-labeled tree is a pair (T,r) of atree T and a labeling functionr: T — Q.

0/1»3 T=1s

UV N

00 01 20 21 22

0,1,2,3,00,01,
20,21,22,210}

210

|1A169 Model Checking: Automata-based LTL model checking 53/130

Alternating Blchi automaton

Definition (run, language)
A run of an alternating BA A= (Q, %, 5, Qp, F) onword w = gpay ... € ¥¥ is a
Q-labeled tree (T, r) such that

mr(e) € Q and

m foreach x € T: {r(xc) | c € Ng,xc € T} |= 6(r(x), aix|)-
Arun (T,r) is accepting iff for each infinite branch o in T it holds that infinitely
many nodes of the branch are labeled with a state in F.

A word w € ¥¥ is accepted by A iff there exists an accepting run of A over w.
A language represented by A is the set L(A) C X of words accepted by A.

|1A169 Model Checking: Automata-based LTL model checking 54/130

Example of an alternating Blchi automaton

ab,c

&<

|1A169 Model Checking: Automata-based LTL model checking 55/130

Example of an alternating Blchi automaton

ac@ @ abo

b c

c

L(A) ={a}*.{b}.{a, b, c}* {c}*

|1A169 Model Checking: Automata-based LTL model checking 56/130

Self-loop alternating Blchi automaton

Intuitively, an alternating BA is self-loop (or 1-weak or linear or very weak, written
SLAA or ATW or VWAA) if it contains no cycles except self-loops.

|1A169 Model Checking: Automata-based LTL model checking 57/130

Self-loop alternating Blchi automaton

Intuitively, an alternating BA is self-loop (or 1-weak or linear or very weak, written
SLAA or ATW or VWAA) if it contains no cycles except self-loops.

Definition (self-loop alternating BA)

Let A=(Q,%,0, Qy, F) be an alternating BA. For each p € Q we define the set of
all successors of p as

Succ(p)={q|Jacx,SCQ:Su{q} Edp,a)}.

Automaton A is self-loop (or 1-weak or linear or very weak) if there exists a partial
order < on Q such that for all p, g € Q it holds:

q e Succ(p) = q<p

|1A169 Model Checking: Automata-based LTL model checking 58/130

m standard Buchi automata are alternating Biichi automata where each J(p, a)
is L or a disjunction of states

m self-loop alternating BA have the same expressive power as LTL

|1A169 Model Checking: Automata-based LTL model checking 59/130

Translation of LTL to BA via self-loop alternating automata

LTL — self-loop alternating BA

LTL — self-loop alternating BA

input: an LTL formula ¢
output: self-loop alternating BA A= (Q, %, 6,{q,}, F) accepting L(y)

|1A169 Model Checking: Automata-based LTL model checking 61/130

LTL — self-loop alternating BA

input: an LTL formula ¢
output: self-loop alternating BA A= (Q, %, 6,{q,}, F) accepting L(y)

m Q= {qy,q-y | ¥ is a subformula of ¢}
m Y = 2AP(¥)

|1A169 Model Checking: Automata-based LTL model checking 62/130

LTL — self-loop alternating BA

input: an LTL formula ¢
output: self-loop alternating BA A= (Q, %, 6,{q,}, F) accepting L(y)

m Q= {qy,q-y | ¥ is a subformula of ¢}
m Y = 2AP(¥)

m ¢ is defined as follows (where @ € B1(Q) satisfies @ = —«)
5(qT, /) =T T =1
5(ga, /) = Tifael, L otherwise r =T
0(q-p:) = 0(qy, 1) G = Gy
5(Qunp,) = 6(qy, 1) A (G, 1) Qy = G
o(axy, 1) = ay BM:,BW
5(q7,11Up7 /) = 5(qp7 /) \ (5(q¢7 /) A q¢Up) /8 B Ny

|1A169 Model Checking: Automata-based LTL model checking 63/130

LTL — self-loop alternating BA

input: an LTL formula ¢
output: self-loop alternating BA A= (Q, %, 6,{q,}, F) accepting L(y)

m Q= {qy,q-y | ¥ is a subformula of ¢}
m Y = 2AP(¥)

m ¢ is defined as follows (where @ € B1(Q) satisfies @ = —«)
5(q—|—7) =T T =1
5(ga, /) = Tifael, L otherwise r =T
0(q-p:) = 0(qy, 1) G = Gy
5(Qunp,) = 6(qy, 1) A (G, 1) Qy = G
o(axy, 1) = ay BM:,BW
5(q7,11Up7) = 5(qp7 /) \ (5(q¢7 /) A q¢Up) /8 B Ny

m [= {q-yup) | YU pis asubformula of x}

|1A169 Model Checking: Automata-based LTL model checking 64/130

LTL — self-loop alternating BA

Note that every infinite path of a run of A has a suffix labeled with a state of the
form gyu, or g-(4up) (other states have no loops and can appear at most once on
a path). F is defined to prevent the first case: ¥Up is satisfied only if p eventually
holds.

Theorem

Given an LTL formula ¢, one can construct an self-loop alternating BA A accepting
L(y) and such that the number of states of A is linear in the length of .

|1A169 Model Checking: Automata-based LTL model checking 65/130

Translation of LTL to BA via self-loop alternating automata

Self-loop alternating BA — BA

Self-loop alternating BA — BA

input: a self-loop alternating BA A= (Q, %, 4, Qo, F)
output: aBA A" = (Q', X, 0', Q, F') accepting L(A)

|1A169 Model Checking: Automata-based LTL model checking 67/130

Self-loop alternating BA — BA

input: a self-loop alternating BA A= (Q, %, 4, Qo, F)
output: aBA A" = (Q', X, 0', Q, F') accepting L(A)

Intuitively, A’ tracks states on each level of the computation tree of A. Moreover, A’
has to divide the set of states into two sets: states labeling paths with recent
occurrence of an accepting state, and states labeling the other paths.

|1A169 Model Checking: Automata-based LTL model checking 68/130

Self-loop alternating BA — BA

input: a self-loop alternating BA A= (Q, %, 4, Qo, F)
output: aBA A" = (Q', X, 0', Q, F') accepting L(A)

mQ =29x%x29

|1A169 Model Checking: Automata-based LTL model checking 69/130

Self-loop alternating BA — BA

input: a self-loop alternating BA A= (Q, %, 4, Qo, F)
output: aBA A" = (Q', X, 0', Q, F') accepting L(A)

mQ =29x2@
m Q) ={({a},9) | g0 € Qo}

|1A169 Model Checking: Automata-based LTL model checking 70/130

Self-loop alternating BA — BA

input: a self-loop alternating BA A= (Q, %, 4, Qo, F)
output: aBA A" = (Q', X, 0', Q, F') accepting L(A)

mQ =29x%x29

m Q) ={({q},0) | g0 € Qo}
m '((U, V),]) is defined as:
m if U # () then
§'((U, V), 1) = {(U', V') | 3X, Y C Q such that
X Ngeud(q. /) and
Y |- Agev 8(g.1) and
U=X~Fand V' =YU(XNF)}
m if U= (0then
5'((0, V),)= {(U, V') | 3Y C Q such that

Y I Agev9(g.1) and
U'=Y~Fand V' =YnF)}

|1A169 Model Checking: Automata-based LTL model checking 71/130

Self-loop alternating BA — BA

input: a self-loop alternating BA A= (Q, %, 4, Qo, F)
output: aBA A" = (Q', X, 0', Q, F') accepting L(A)

mQ =29x%x29

m Oy =1{({q},0)] q € Qo}
m '((U, V),]) is defined as:
m if U # () then
§'((U, V), 1) = {(U', V') | 3X, Y C Q such that
X = Agew9(a,1) and
Y | Agev 3(a,/) and
U=X~Fand V' = YU(XNF)}
m if U= (0then

§'((0, V), 1) = {(U, V') | 3Y C Q such that

Y I Agev9(g.1) and
U'=Y~Fand V' =YnF)}

m A ={}} x29

|1A169 Model Checking: Automata-based LTL model checking 72/130

Self-loop alternating BA — BA

Given a self-loop alternating BA A= (Q, %, 6, Qo, F), one can construct a BA A
accepting L(A) and such that the number of states of A’ is 2°(1Q)).

|1A169 Model Checking: Automata-based LTL model checking 73/130

Self-loop alternating BA — BA

Given a self-loop alternating BA A= (Q, %, 6, Qo, F), one can construct a BA A
accepting L(A) and such that the number of states of A’ is 2°(1Q)).

Corollary

Given an LTL formula ¢ and an alphabet ¥, one can construct a BA A" accepting
L(y) and such that the number of states of A’ is 2°(#1).

|1A169 Model Checking: Automata-based LTL model checking 74/130

Algorithms checking disjointness of Ax and A,

Automata-based LTL model checking

(fair) Kripke structure K LTL formula ¢
(generalized) Biichi automaton Ak Blichi automaton A-,
representing (fair) runs of K representing runs violating ¢

~

L(A) N L(A~p) Z 0

N

YES, NO + counterexample,
KE@F ¢ i.e. a (fair) run 7 of K such that 7 }= ¢

|1A169 Model Checking: Automata-based LTL model checking 76/130

Automata-based LTL model checking

(fair) Kripke structure K LTL formula ¢
(generalized) Biichi automaton Ak Blichi automaton A-,
representing (fair) runs of K representing runs violating ¢

\\\\‘ (////

product generalized Biichi automaton B
L(B) = L(Ak) N L(A-y)

l

L(B) L0
YES, NO + counterexample,
KE@F ¢ i.e. a (fair) run 7 of K such that 7 }= ¢

|1A169 Model Checking: Automata-based LTL model checking 771130

Construction of product automaton

input: GBAs Ay = (@, X, 61, Qo1, F1) and Az = (Qz, X, b2, Qo2, F2)
output: a GBA B = (Q1 x Qo, %, 9, Qo1 x Quz, F) representing L(Ay) N L(A2)

m o= {((p1,p2),a (q1,5)) | (p1,a,q1) € 6y and (p2, &, g2) € 2}
BF={FixQ|FicF}U{Q x Fy| Fj € Fa}

|1A169 Model Checking: Automata-based LTL model checking 78/130

Construction of product automaton

input: GBAs Ay = (@, X, 61, Qo1, F1) and Az = (Qz, X, b2, Qo2, F2)
output: a GBA B = (Q1 x Qo, %, 9, Qo1 x Quz, F) representing L(Ay) N L(A2)

m o= {((p1,p2),a (q1,5)) | (p1,a,q1) € 6y and (p2, &, g2) € 2}
BF={FixQ|FicF}U{Q x Fy| Fj € Fa}

ab,c | ¢

3’06@137—5@\;@ Fo={{p.r}}

oy
QD

a,c
Fi={{1}.{2}}

|1A169 Model Checking: Automata-based LTL model checking 79/130

Construction of product automaton

input: GBAs Ay = (Qy, X, 01, Qo1, Fy) and Az = (@2, X, 62, Quz, F2)
output: a GBA B = (Q1 x Qo, %, 9, Qo1 x Quz, F) representing L(Ay) N L(A2)

m o= {((p1,p2):a,(q1,92)) | (P1,8,q1) € 61 and (P2, &, @) € J2}
mF={Fx Q| FjeF}U{Q x Fa| Fi € F>}

Lemma

L(B) = L(A)) N L(Ay).

|1A169 Model Checking: Automata-based LTL model checking 80/130

Emptiness of a GBA

LetB=(Q,X%,0,Qy, F) be a GBA. The following conditions are equivalent.
L(B)#0
There exists a nontrivial SCC of B reachable from Qg and such that the SCC
contains at least one state of each F; € F.

There exists an accepting run of B of the form t.p“ (so-called lasso-shaped).

|1A169 Model Checking: Automata-based LTL model checking 81/130

Emptiness of a GBA

LetB=(Q,X%,0,Qy, F) be a GBA. The following conditions are equivalent.
L(B) #0

There exists a nontrivial SCC of B reachable from Qg and such that the SCC
contains at least one state of each F; € F.

There exists an accepting run of B of the form t.p“ (so-called lasso-shaped).

1 = 2 Assume that L(B) # (). Hence, there exists an accepting run 7. The
run has to contain an infinite suffix contained in a single nontrivial
SCC of B reachable form Q. As the run visits each F; € F infinitely
often, this SCC has to contain at least one state of each F; € F.

|1A169 Model Checking: Automata-based LTL model checking 82/130

Emptiness of a GBA

LetB=(Q,X%,0,Qy, F) be a GBA. The following conditions are equivalent.
L(B) #0
There exists a nontrivial SCC of B reachable from Qg and such that the SCC
contains at least one state of each F; € F.
There exists an accepting run of B of the form t.p“ (so-called lasso-shaped).

2 — 3 Assume that B has a nontrivial SCC reachable from Qy and
containing at least one state of each F; € F. Let 7 be a sequence of
successive states starting in Qy and leading to a state g of the SCC.
Due to the properties of the SCC, there exists a sequence p of states
of the SCC which starts in some successor of g, ends in g, and
contains some state of each F; € F. Then 7.p* is an accepting run.]

|1A169 Model Checking: Automata-based LTL model checking 83/130

Emptiness of a GBA

LetB=(Q,X%,0,Qy, F) be a GBA. The following conditions are equivalent.
L(B)#0
There exists a nontrivial SCC of B reachable from Qg and such that the SCC
contains at least one state of each F; € F.

There exists an accepting run of B of the form t.p“ (so-called lasso-shaped).

3 =— 1 Obvious.

|1A169 Model Checking: Automata-based LTL model checking 84/130

Algorithms checking disjointness of Ax and A,

Algorithm based on SCC decomposition

Emptiness check by SCC decomposition

input :aGBAB=(Q,%,0,Qy,F)
output: true if L(B) = 0; false otherwise

procedure isGBAempty

remove unreachable states from the automaton

decompose the automaton into SCCs

if some nontrivial SCC contains at least one state of each F; ¢ F then
| return false

else
| return true

|1A169 Model Checking: Automata-based LTL model checking 86/130

Emptiness check by SCC decomposition

input :aGBAB=(Q,%,0,Qy,F)
output: true if L(B) = 0; false otherwise

procedure isGBAempty

remove unreachable states from the automaton

decompose the automaton into SCCs

if some nontrivial SCC contains at least one state of each F; ¢ F then
| return false

else
| return true

m if L(B) # (), a counterexample accepted by a lasso-shaped run 7.p* can be
constructed such that 7 reaches the found SCC from @ and p is a loop
containing all states of the SCC

m the corresponding accepted word u.v¥ € L(B) is also lasso-shaped

|1A169 Model Checking: Automata-based LTL model checking 87/130

Emptiness check by SCC decomposition

pros
m simple
m SCC decomposition can be done in time O(|Q| + |4])

|1A169 Model Checking: Automata-based LTL model checking 88/130

Emptiness check by SCC decomposition

pros
m simple
m SCC decomposition can be done in time O(|Q| + |4])

cons
m the whole GBA has to be known before the procedure starts

m in model checking, GBA is a product of Ax and A-, where Ak is typically
very large and described implicitly

|1A169 Model Checking: Automata-based LTL model checking 89/130

Emptiness check by SCC decomposition

pros
m simple
m SCC decomposition can be done in time O(|Q| + |4])

cons
m the whole GBA has to be known before the procedure starts

m in model checking, GBA is a product of Ax and A-, where Ak is typically
very large and described implicitly

on-the-fly model checking algorithms

m the emptiness check explores the product automaton gradually and can
detect nonemptiness without knowing the whole product

m the states and transitions of the product are constructed from A-, and the
implicit description of Ax only on demand

|1A169 Model Checking: Automata-based LTL model checking 90/130

Algorithms checking disjointness of Ax and A,

Nested DFS algorithm

Nested DFS check

m also called double DFS

m allows on-the-fly model checking

m checks emptiness of a BA (not generalized)

m can be easily used for model checking of a (not fair) Kripke structure K
m such K is transformed into a BA Ak where all states are accepting

|1A169 Model Checking: Automata-based LTL model checking 92/130

Nested DFS check

m also called double DFS

m allows on-the-fly model checking

m checks emptiness of a BA (not generalized)

m can be easily used for model checking of a (not fair) Kripke structure K
m such K is transformed into a BA Ak where all states are accepting

construction of product BA for a BA with all states accepting and another BA

input: a BA A = (Q1 , 2,01, Qo1 Q1) andaBA A, = (Qz, Y, 62, Qo, Fz)
output: aBA B = (Q x @, L, 5, Qot x Que, F) representing L(A1) N L(A2)

m 0= {((p1,p2),a(q1,92)) | (p1,a q1) € 6y and (p2,a,q2) € 92}
mF= Q1 X F2

|1A169 Model Checking: Automata-based LTL model checking 93/130

Emptiness of a BA

LetB=(Q,%,d,Qy, F) be a BA. The L(B) +#) < there exist a run of the form
T.p¥ where p starts with a state of F.

|1A169 Model Checking: Automata-based LTL model checking 94/130

Emptiness of a BA

LetB=(Q,%,d,Qy, F) be a BA. The L(B) +#) < there exist a run of the form
T.p¥ where p starts with a state of F.

< Follows directly from the fact that 7.p* is an accepting run of B.

|1A169 Model Checking: Automata-based LTL model checking 95/130

Emptiness of a BA

LetB=(Q,%,d,Qy, F) be a BA. The L(B) +#) < there exist a run of the form
T.p¥ where p starts with a state of F.

< Follows directly from the fact that 7.p* is an accepting run of B.

— Assume that L(B) # (). There exists an accepting run
T = 8S1... € @Y. As 7 is accepting, there exists a state
q € inf(m) N F. Let i < j be such that s;, s; are the first two
occurrences of g in 7. Further, let 7 = 5951 ... 5;_1 and
p = SiSit1...8j—1. Then 7.p¥ = 5y ... 8j_1.(S;Sj11...S_1)” isarun
of B and p starts with s; € F.
O

|1A169 Model Checking: Automata-based LTL model checking 96/130

Nested DFS algorithm

m the algorithm uses two nested instances of depth-first search

m the first DFS searches for reachable accepting states

m the nested DFS looks for a cycle from accepting states

m the algorithm terminates when a cycle from an accepting state is found

m all executions of the nested DFS share the information about visited states:
without this feature, the overall complexity of nested DFS executions would be
O(IF| - (1Q[+4]))

|1A169 Model Checking: Automata-based LTL model checking 97/130

Nested DFS algorithm

input :aBAB=(Q,%,5,Q,F)
output: true if L(B) = 0;
false otherwise

procedure isBAempty

visited1 < 0
visited2 « ()
onStack + 0 procedure dfs2(q)
forall g, € O do visited2 « visited2 U {q}
| dfs1(qo) forall successors g’ of g do
terminate true if g’ € onStack then terminate false
if g’ ¢ visited2 then dfs2(q’)
procedure dfs1(q)

visited1 « visited1 U {q}
onStack + onStack U {q}
forall successors g’ of g do

| if g’ ¢ visited1 then dfs1(q’)
if g ¢ F then dfs2(q)
onStack «+ onStack \ {qg}

|1A169 Model Checking: Automata-based LTL model checking 98/130

Example

|

@W—® ©

%@ ®

g

|1A169 Model Checking: Automata-based LTL model checking 99/130

Nested DFS algorithm

m if the algorithm returns false, it can produce a counterexample corresponding
to the lasso-shaped accepting run given by the current content of DFS stacks

m let g be the accepting state from which the last nested DFS was executed
m let ¢’ be the state on stack discovered by the nested DFS

!
----- stack of the first DFS
G T stack of the nested DFS
‘
, accepting lasso-shaped run:
‘/ . Qo--+q'--+(q--+q'--»)¥
L

|1A169 Model Checking: Automata-based LTL model checking 100/130

Correctness of the nested DFS algorithm

The nested DFS algorithm returns false <— L(B) # 0.

|1A169 Model Checking: Automata-based LTL model checking 101/130

Correctness of the nested DFS algorithm

The nested DFS algorithm returns false <= L(B) # 0.

Proof.

—> is obvious. We prove <= by contradiction. Assume that L(B) # () and the
algorithm returns true. As L(B) # (), there is a run 7.p* where p starts with a state
g € F. When the nested DFS is started from g, there has to be a state ¢’ on the
stack of the first DFS reachable from q. Nested DFS has not found the cycle
because ¢ is reachable only via r € visited2. Assume that g is the first such a
state and that r is added to visited2 during the nested DFS started from q” € F.

If g” is reachable from g, then there is a cycle q” --+ r --» g --» q” which is
the contradiction with the assumption that q is the first such state.

If @” is not reachable from g, then q is reachable from q” via @” --» r --» q.
We have the contradiction with the fact that the first DFS backtracks from a
state only after it backiracks from all states reachable from them and thus
nested DFS from g” cannot be executed before the nested DFS from q. O

|1A169 Model Checking: Automata-based LTL model checking 102/130

Complexity of the nested DFS algorithm

complexity of the first DFS
m time: O(|Q| + |4])
m space: O(|Q))

|1A169 Model Checking: Automata-based LTL model checking 103/130

Complexity of the nested DFS algorithm

complexity of the first DFS
m time: O(|Q| + |4])
m space: O(|Q))

complexity of the nested DFS (all executions)
m time: O(|Q| + |9])
m space: O(|Q))

|1A169 Model Checking: Automata-based LTL model checking 104/130

Complexity of the nested DFS algorithm

complexity of the first DFS
m time: O(|Q| + |4])
m space: O(|Q))

complexity of the nested DFS (all executions)
m time: O(|Q| + |9])
m space: O(|Q))

overall complexity
m time: O(|Q| + |4])
m space: O(|Q))

|1A169 Model Checking: Automata-based LTL model checking 105/130

Algorithms checking disjointness of Ax and A,

Optimizations

Terminal and weak BA

Definition (terminal BA, weak BA)
Let B be a Biichi automaton with alphabet >. A Blichi automaton is terminal if
each accepting state has a loop transition under each a € %.

A Blichi automaton is weak if each strongly connected component consists either
of accepting states or of nonaccepting states.

|1A169 Model Checking: Automata-based LTL model checking 107/130

Terminal and weak BA

Definition (terminal BA, weak BA)
Let B be a Biichi automaton with alphabet >. A Blichi automaton is terminal if
each accepting state has a loop transition under each a € %.

A Blichi automaton is weak if each strongly connected component consists either
of accepting states or of nonaccepting states.

m many LTL properties translate to terminal or weak BA
m if this is the case, simpler emptiness checks can be used

|1A169 Model Checking: Automata-based LTL model checking 108/130

Optimization for terminal automata

assume that A, is a terminal BA and each state of BA Ay is accepting and
has a successor

let B be the product BA of A-, and Ak
L(B) # 0 iff B has a reachable accepting state

instead of nested DFS, emptiness of L(B) can be decided by a single DFS
checking the reachability of an accepting state

properties ¢ with terminal A-, are called safety properties
typical safety property: G-err

|1A169 Model Checking: Automata-based LTL model checking 109/130

Optimization for weak automata

m assume that A-, is a weak BA and each state of BA Ak is accepting
m let B be the product BA of A, and a BA Ak
m each cycle of B contains either only accepting states or no accepting state

m instead of nested DFS, emptiness of L(B) can be decided by a single DFS
that looks for a cycle and if a cycle is found, it checks whether the current
state is accepting

m typical property ¢ with weak A-,: G(a = Fb) (responsivity)

|1A169 Model Checking: Automata-based LTL model checking 110/130

Extending LTL with release

m another derived LTL operator release: p Ry = —(—p U —9))
m equivalently: pRy = Gy vV v U (¥ A)

aRb bbbb... or bb.. b(ab)...

m by adding L, v, and R to the basic syntax of LTL, we can push all negations
towards atomic propositions using equivalences

“(pUy) = —pR-
“(pRY) = —pU—1
Xp = X-p
(VYY) = —p A
“(pAY) = —p V Y

a

——a

|1A169 Model Checking: Automata-based LTL model checking 111/130

Hierarchy of LTL classes

Definition (hierarchy of LTL classes)

m > = [y is the smallest set of LTL formulas containing all atomic propositions
and closed under application of A, Vv, =, and X.

m >, 4 is the smallest set of LTL formulas containing IM; and closed under
application of A, Vv, X, and U.

m [, is the smallest set of LTL formulas containing X; and closed under
application of A, Vv, X, and R.

|1A169 Model Checking: Automata-based LTL model checking 112/130

Hierarchy of LTL classes

Definition (hierarchy of LTL classes)

m > = [y is the smallest set of LTL formulas containing all atomic propositions
and closed under application of A, Vv, =, and X.

m >, 4 is the smallest set of LTL formulas containing IM; and closed under
application of A, Vv, X, and U.

m [, is the smallest set of LTL formulas containing X; and closed under
application of A, Vv, X, and R.

m for each ¢ € I;, =y can be transformed (by pushing negations towards atomic
propositions) to an equivalent formula ¢ € ¥;

m for each ¢ € ¥;, - can be transformed (by pushing negations towards atomic
propositions) to an equivalent formula v € I;

|1A169 Model Checking: Automata-based LTL model checking 113/130

Properties corresponding to LTL classes

m)Y describes guarantee properties

m [1; describes safety properties

m BT (X4 Uy) describes obligation properties

m Y, describes persistence properties

m [, describes recurrence (or response) properties

m BT (X, UTy) describes reactivity properties

m the LTL classes are sometimes called guarantee, safety, ... formulae

|1A169 Model Checking: Automata-based LTL model checking 114/130

Hierarchy of properties

reactivity
Bf(X,un
(%2 2) weak BA
recurrence persistence
M2 2
obligation B
B+(Z1 U |_|1)
terminal BA
safety guarantee
|_|1 Z1
Yo ="Tlo

m each language definable in LTL is definable in B+ (X, U MMy)
m formulae of X4 can be translated to terminal BA

m formulae of ¥, can be translated to weak BA
|1A169 Model Checking: Automata-based LTL model checking 115/130

Fighting state-space explosion

state-space explosion problem
m Kripke structure (and thus also the product automaton) can have enormous
number of states, often exponential in the size of its implicit description
m model checking algorithms often run out of memory

|1A169 Model Checking: Automata-based LTL model checking 116/130

Fighting state-space explosion

state-space explosion problem
m Kripke structure (and thus also the product automaton) can have enormous
number of states, often exponential in the size of its implicit description
m model checking algorithms often run out of memory

methods fighting the problem
m low-level techniques for saving memory
m lossless compression of states in memory
m heuristics based on lossy compression
m forgetting some visited states

|1A169 Model Checking: Automata-based LTL model checking 117/130

Fighting state-space explosion

state-space explosion problem
m Kripke structure (and thus also the product automaton) can have enormous
number of states, often exponential in the size of its implicit description
m model checking algorithms often run out of memory

methods fighting the problem
m low-level techniques for saving memory
m lossless compression of states in memory
m heuristics based on lossy compression
m forgetting some visited states
m on-the-fly approaches
m can help to find a counterexample, but does not help for correct systems

|1A169 Model Checking: Automata-based LTL model checking 118/130

Fighting state-space explosion

state-space explosion problem
m Kripke structure (and thus also the product automaton) can have enormous
number of states, often exponential in the size of its implicit description
m model checking algorithms often run out of memory

methods fighting the problem
m low-level techniques for saving memory
m lossless compression of states in memory
m heuristics based on lossy compression
m forgetting some visited states
m on-the-fly approaches
m can help to find a counterexample, but does not help for correct systems
m state-space reduction methods
m partial order reduction (only for LTL properties without X operators)
m symmetry reduction (avoids exploration of symmetric parts)
m abstraction

|1A169 Model Checking: Automata-based LTL model checking 119/130

Fighting state-space explosion

state-space explosion problem
m Kripke structure (and thus also the product automaton) can have enormous
number of states, often exponential in the size of its implicit description
m model checking algorithms often run out of memory

methods fighting the problem
m low-level techniques for saving memory
m lossless compression of states in memory
m heuristics based on lossy compression
m forgetting some visited states
m on-the-fly approaches
m can help to find a counterexample, but does not help for correct systems
m state-space reduction methods
m partial order reduction (only for LTL properties without X operators)
m symmetry reduction (avoids exploration of symmetric parts)
m abstraction
m symbolic representation of sets of states (by formulae or BDDs)

m parallel and distributed algorithms
|1A169 Model Checking: Automata-based LTL model checking 120/130

Action-based version of LTL model checking

Action-based LTL model checking

actions
m basic observable information attached to each transition of the system
m for example: gate openning, process P entered critical section
m Act denotes a countable set of actions

|1A169 Model Checking: Automata-based LTL model checking 122/130

Action-based LTL model checking

actions
m basic observable information attached to each transition of the system
m for example: gate openning, process P entered critical section
m Act denotes a countable set of actions

m basic formalism for action-based systems is a labeled transition system

|1A169 Model Checking: Automata-based LTL model checking 123/130

Labeled transition system

Definition (labeled transition system, LTS)

A labeled transition systems (LTS) is a tuple M = (S, Act', §, Sp), where
m Sis a set of states,
m Act’ C Act is a finite set of actions,
m 5§ C S x Act’ x Sis a transition relation,
m Sy C Sis a set of initial states.

|1A169 Model Checking: Automata-based LTL model checking 124/130

Labeled transition system

Definition (labeled transition system, LTS)

A labeled transition systems (LTS) is a tuple M = (S, Act', §, Sp), where
m Sis a set of states,
m Act’ C Act is a finite set of actions,
m 5§ C S x Act’ x Sis a transition relation,
m Sy C Sis a set of initial states.

Definition (run, trace)

Let M = (S, Act', 5, Sp) be an LTS. A run of M is an infinite sequence

™ = (S0, &0, 51)(S1, a1, S2)(S2, @, S3) . .. € 0“ of adjacent transitions such that
Sy € Sp.

The trace of 7 is then the infinite word o (7) = apajas

|1A169 Model Checking: Automata-based LTL model checking 125/130

Modified syntax and semantics of LTL

modified syntax of LTL
m the only change is that a ranges over Act (instead of AP)

|1A169 Model Checking: Automata-based LTL model checking 126/130

Modified syntax and semantics of LTL

modified syntax of LTL
m the only change is that a ranges over Act (instead of AP)

modified semantics of LTL
m we interpret LTL on infinite words w = w(0)w(1)... € Act”
m the only change in the inductive definition of w |= ¢ is the line
wEa iff a=w(0) (instead of w=a iff ae w(0))

|1A169 Model Checking: Automata-based LTL model checking 127/130

The goal of action-based LTL model checking

Definition
Let M = (S, Act', §, Sp) be an LTS and ¢ be an LTL formula.

A run 7 of M satisfies ¢, written 7 |= ¢, if o(7) = .
M satisfies ¢, written M |= o, if 7 = ¢ holds for every run = of M.

|1A169 Model Checking: Automata-based LTL model checking 128/130

The goal of action-based LTL model checking

Definition
Let M = (S, Act', §, Sp) be an LTS and ¢ be an LTL formula.

A run 7 of M satisfies ¢, written 7 |= ¢, if o(7) = .
M satisfies ¢, written M = ¢, if 7 = ¢ holds for every run 7 of M.

The goal of action-based LTL model checking is to decide whether a given LTS M
satisfies a given LTL formula ¢. In the negative case, model checking should
provide a counterexample, i.e., a run = of M such that = [~ .

|1A169 Model Checking: Automata-based LTL model checking 129/130

Automata-based approach to action-based LTL model checking

The automata-based approach to LTL model checking of finite LTS is basically
identical as for finite Kripke structures.

changes
m Biichi automata use the alphabet ¥ = Act’ given by the LTS
m we assume that ¢ contains only actions from Act’ (otherwise, we extend Act’)
m LTS M = (S, Act’, 6, Sp) is transformed into a BA Ay = (S, Act’, 6, Sy, S)
m modification of LTL — self-loop alternating BA translation

d(ga,l) = T ifa=1, L otherwise (instead of §(qgas,/) = T if a € I, L otherwise)

|1A169 Model Checking: Automata-based LTL model checking 130/130

