IA169 Model Checking

CTL model checking

Jan Strejcek

Faculty of Informatics
Masaryk University

Linear vs. branching time

linear time view
m Amir Pnueli, 1977
m system behavior can be seen as a set of state sequences
m property is a restriction applied to each such a sequence
m property can be described by LTL

|1A169 Model Checking: CTL model checking 2/33

Linear vs. branching time

linear time view
m Amir Pnueli, 1977
m system behavior can be seen as a set of state sequences
m property is a restriction applied to each such a sequence
m property can be described by LTL

branching time view
m Edmund M. Clarke and E. Allen Emerson, 1980

m system behavior is a computation tree, i.e., a branching structure of possible
successors of each reachable state of the system

m property is a restriction on the tree
m property can be described by CTL or CTL*

|1A169 Model Checking: CTL model checking 3/33

Example of a system and its computation tree

|1A169 Model Checking: CTL model checking 4/33

Agenda and sources

agenda
m computation tree logic (CTL)
m CTL model checking
m CTL*

source

m Chapters 5 and 6 of E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and R.
Bloem: Model Checking, Second Edition, MIT, 2018.

|1A169 Model Checking: CTL model checking 5/33

Computation tree logic (CTL)

Intuition for CTL

m we present only state-based CTL model checking

m for a given in node of a computation tree, the subtree rooted by the node
represents all possible runs from the node

m CTL formula talks about runs from this node

m CTL uses temporal operators X, U, F, G known from LTL, but extended with
quantifier A saying that the formula should hold on all runs or quantifier E
saying that there exists a run satisfying the formula

m for example, EFa says that there exists a run from the node such that a holds
somewhere on the run

|1A169 Model Checking: CTL model checking 7/33

Computation tree logic (CTL)

Definition (computation tree logic, CTL)

Formulae of Computation Tree Logic (CTL) are defined by

o u=T | al | eiAp2 | EXp | E(w1Up2) | A(pr Up2)

where T stands for frue and a ranges over a countable set AP.
By AP(y) we denote the set of atomic propositions appearing in .

|1A169 Model Checking: CTL model checking 8/33

Computation tree logic (CTL)

Definition (computation tree logic, CTL)

Formulae of Computation Tree Logic (CTL) are defined by

o u=T | al | eiAp2 | EXp | E(w1Up2) | A(pr Up2)

where T stands for frue and a ranges over a countable set AP.
By AP(y) we denote the set of atomic propositions appearing in .

abbreviations
m standard ones for L,V,=, <
m EFp = E(TUyp)
m AFp = A(TUyp)
m EGy = -AF-p
m AGyp = —EF—¢p
B AXyp = —EX—p

|1A169 Model Checking: CTL model checking 9/33

Intuitive semantic of CTL

EXa AXa
E(aUb) A(aUb)
EFa AFa
EGa AGa

|1A169 Model Checking: CTL model checking 10/33

Semantics of CTL

m we interpret CTL over states of a Kripke structure
m we assume that each state of a Kripke structure has at least one successor

Definition (path)

Let K = (S, T, Sy, L) be a Kripke structure and s € S be its state. An (infinite) path
of K starting in s is an infinite sequence = = 53515 ... of states such that s = s
and (s;, si+1) € T holds for each i > 0.

By 7 (/) we denote the state s; of 7.
By 7; we denote the infinite path = (/)7 (i + 1)x(i +2).. ..
By Pk (s) we denote the set of all infinite paths starting in s.

|1A169 Model Checking: CTL model checking 11/33

Semantics of CTL

The relation K, s = ¢, meaning that state s of a Kripke structure K = (S, T, S, L)
satisfies CTL formula ¢, is defined inductively as follows.

K,sET

K,ska iff
K,s - iff
K,S):(/H/\(pg iff
K,s = EXp iff

K, s |= E(p1 U py) iff

K, s |= A(p1 U py) iff

|1A169 Model Checking: CTL model checking

aclL(s)

K,sl£ ey

KSFwAKSFm

3 € Pu(s) . K,n(1) = ¢

Ir € Pk(s) . E|I>0 KW()):QOQ/\
AVO<j<i.K,n(j) E p1

Vr e Pk(s).3i>0.K, ()):<p2A
AVO <) <i.K,m(j)E e

12/33

Semantics of CTL

The relation K, s = ¢, meaning that state s of a Kripke structure K = (S, T, S, L)
satisfies CTL formula ¢, is defined inductively as follows.

K,sET

K,skE=a iff aec L(s)

K,s = -y iff K,slke
K.skEpiAp2 ff KS)=s01/\KS)=sDz
K,s = EXy itf 3 e Pe(s). K,x(1) £ ¢

K,s = E(p1Upo) iff 3m € Pk(s) . 3/20 K, m(i) E @2 A
AVO<j<i.K,n(j) E p1

K,s = A(p1Ugpp) iff Vme Pk(s).3i>0.K,n(i) = p2 A
AVO<j<i.K,n(j) = ¢1

K satisfies ¢, written K |= ¢, if K, sg = ¢ holds for every sy € Sp.

|1A169 Model Checking: CTL model checking 13/33

Exercise

m condsider a Kripke structure with atomic propositions {a, b, r, restart}
m express the following properties by CTL formulae
it is possible to reach a state where a holds and b does not
whenever request r is received, the system eventually generates
acknowledgment a
whenever b holds, it is possible that b will never hold again
there is always an option to reset by system, i.e., to reach a state where restart
holds

|1A169 Model Checking: CTL model checking 14/33

CTL model checking

CTL model checking problems

Let K = (S, T, So, L) be a Kripke structure and ¢ be a CTL formula. We can
consider the following problems.

m to decide whether K = ¢

m |ocal CTL model checking problem: to decide whether K, s = ¢ holds for a
given state s € S

m global CTL model checking problem: to compute the set of states where ¢
holds, i.e., the set {s € S| K, s = ¢}.

|1A169 Model Checking: CTL model checking 16/33

CTL model checking problems

Let K = (S, T, So, L) be a Kripke structure and ¢ be a CTL formula. We can
consider the following problems.
m to decide whether K = ¢
m |ocal CTL model checking problem: to decide whether K, s = ¢ holds for a
given state s € S
m global CTL model checking problem: to compute the set of states where ¢
holds, i.e., the set {s € S| K, s = ¢}.

We present an algorithm that can decide all the problems on finite Kripke
structures. Since now on, we consider only Kripke structures with finitely many
states.

|1A169 Model Checking: CTL model checking 17/33

Idea of the algorithm

mletK=(ST,Sp,L) be aKripke structure and ¢ be a CTL formula

m we transform ¢ to the form that uses only existentially quantified temporal
operators EX, EG, EU (i.e., not AU) using the equivalence

AlpUv) = “EG¢ A —E(=¢ U (—p A —¢))
m hence, we assume that ¢ is of the form
p =T lal | piAp2 | EXe | EGp | E(p1Uez)

m let subf(y) denote all subformulae of ¢, for example
subf(E(—aUEG(b A c))) ={E(-aUEG(bAC)),—a,a,EG(bACc),bAc,b,c}

m the algorithm computes function label : S — 254(¥) assigning to each state s
the set of all subformulae v satisfying K, s = v

m the function is built gradually, starting with the atomic proposition of ¢ and
proceeding towards more complex subformulae, ending with ¢ itself

|1A169 Model Checking: CTL model checking 18/33

CTL model checking algorithm

input : a Kripke structure K = (S, T, Sp, L) and a CTL formula ¢
output: function label : S — 25U01(¥) satisfying ¢ € label(s) iff K, s |= ¢ foreach s € S

procedure CTLmc(K, ¢)

forall s ¢ S do label(s) < (L(s) N AP(¢)) U ({T} N subf(y))
solved + AP(p) U ({T, L} N subf(y))

while ¢ ¢ solved do

choose 1) € subf(y) \ solved such that subf(y) ~ {¢} C solved
updatelabel(t))

solved <+ solved U {¢'}

return label

procedure updatelLabel(v))
if » = E(p1 U p2) then checkEU(p1, p2)
if » = EGp then checkEG(p)
forall s € Sdo
if v = —pand p ¢ label(s) then label(s) « label(s) U {¢}
if v = p1 A poand py, po € label(s) then label(s) «+ label(s) U {¢}
if v = EXp and there exists s’ € S such that (s,s’) € T and p € label(s’) then
| label(s) < label(s) U {¢'}

|1A169 Model Checking: CTL model checking 19/33

CTL model checking algorithm

procedure checkEU(p1, p2)
Q < {s] p2 € label(s)}
forall s ¢ Q do label(s) + label(s) U {E(p1 U p2)}
while Q +# () do
choose s € Q
Q+— Q~{s}
forall s’ such that (s’,s) € T do
if p1 € label(s’) and E(p1 U p2) & label(s’) then
label(s’) + label(s’) U {E(p1 U p2)}
Q+ Qu{s'}

|1A169 Model Checking: CTL model checking 20/33

CTL model checking algorithm

procedure checkEG(p)
S + {s| p € label(s)}
Q + {s| sis a node of some nontrivial SCC of graph (S, TN (S x §'))}
forall s € Q do label(s) + label(s) U {EGp}
while Q +# () do
choose s € Q
Q+— Q~{s}
forall s’ such that (s’,s) € T do
if p € label(s’) and EGp ¢ label(s’) then
label(s’) « label(s’") U {EGp}
Q+ Qu{s'}

|1A169 Model Checking: CTL model checking 21/33

Example

check if microwave oven satisfies
AG(Start = AF Heat)

~Start
~Close
~Heat

~Error

start oven open door close door open door

cook

~Start
Close
Heat

~Error

open door start cooking

close door start oven

Start
Close
~Heat
~Error

warmup

|1A169 Model Checking: CTL model checking

22/33

Transformation of formula AG(Start = AF Heat)

AG(Start = AF Heat) —EF(—(Start = AF Heat))
-EF(Start A —AF Heat)
—EF(Start A EG—Heat)

—E(T U (Start A EG—-Heat))

|1A169 Model Checking: CTL model checking 23/33

Transformation of formula AG(Start = AF Heat)

AG(Start = AF Heat)

subformuala p

—EF(—(Start = AF Heat))
—EF(Start A —AF Heat)
—EF(Start A EG—Heat)
—E(T U (Start A EG—-Heat))

states satisfying p, i.e. {s | K,s = p}

=
Start

Heat

—-Heat

EG—-Heat

Start A EG—-Heat

T U (Start A EG—Heat)
—E(T U (Start A EG—-Heat))

|1A169 Model Checking: CTL model checking

{1,2,3,4,5,6,7}
{2,5,6,7}

14,7}
{1,2,3,5,6}
{1,2,3,5}

12,5}
{1,2,3,4,5,6,7}
0

24/33

Complexity of the CTL model checking algorithm

m each formula ¢ has at most || subformulae

m decomposition of every subgraph (S, TN (S’ x §')) of K into SCCs can be
done in time O(|S| + |T|)

m every call of updateLabel(v) terminates in time O(|S| + |T|)

m CTLmc runs in time O(J¢| - (|S| + |T])) and in space O(|¢| - |S])

|1A169 Model Checking: CTL model checking 25/33

Complexity of the CTL model checking algorithm

m each formula ¢ has at most || subformulae

m decomposition of every subgraph (S, TN (S’ x §')) of K into SCCs can be
done in time O(|S| + |T|)

m every call of updateLabel(«)) terminates in time O(|S| + |T|)
m CTLmc runs in time O(J¢| - (|S| + |T])) and in space O(|¢| - |S])

m despite its linear complexity, the algorithm also suffers from state-space
explosion as the Kripke structure can be extremely large

m in fact, the problem is common for all explicit-state model checking algorithms,
where states are handled individually

|1A169 Model Checking: CTL model checking 26/33

CTL*

Comparison of LTL and CTL

m LTL and CTL are expressively incomparable
m there is no CTL formula ¢ such that K = ¢ <= K = FGaforeach K
m there is no LTL formula ¢ such that K |= ¢ <= K = AGEF afor each K

|1A169 Model Checking: CTL model checking 28/33

Comparison of LTL and CTL

m LTL and CTL are expressively incomparable
m there is no CTL formula ¢ such that K = ¢ <= K = FGaforeach K
m there is no LTL formula ¢ such that K = ¢ < K = AGEF a for each K

CTL*
m a common generalization of both CTL and LTL
m a branching time logic
m the main idea is to decouple temporal operators and quantifiers
m for example, A(a A FG b) is a CTL* formula, but not CTL formula

|1A169 Model Checking: CTL model checking 29/33

CTL*

m the syntax distinguishes two types of formulae: path and state formulae
m aplication of quantifiers E, A on a path formula results in a state formula
Definition (CTL*)
Formulae of CTL" are inductively defined by
pu=T | a| | prAps | EY (state formuale)
Vo= | [Y1 A | Xep | 1 Use (path formulae)

where T stands for true and a ranges over a countable set AP, ¢ represents state
formulae and « represents path formulae.

|1A169 Model Checking: CTL model checking 30/33

CTL*

m the syntax distinguishes two types of formulae: path and state formulae
m aplication of quantifiers E, A on a path formula results in a state formula
Definition (CTL*)
Formulae of CTL" are inductively defined by

=T al|l | prAe2 | Ep (state formuale)
o= U | Yy AYe | X | 1 Uy (path formulae)

where T stands for true and a ranges over a countable set AP, ¢ represents state
formulae and « represents path formulae.

m similar abbreviations can be defined as for LTL and CTL

|1A169 Model Checking: CTL model checking 31/33

CTL*

m the syntax distinguishes two types of formulae: path and state formulae
m aplication of quantifiers E, A on a path formula results in a state formula

Definition (CTL*)
Formulae of CTL" are inductively defined by
=T al|l | prAe2 | Ep (state formuale)

Y=o 2 [YrAYe | X | Uy (path formulae)

where T stands for true and a ranges over a countable set AP, ¢ represents state
formulae and « represents path formulae.

m similar abbreviations can be defined as for LTL and CTL

m path/state formulae are interpreted over paths/states in a Kripke structure

m we assume that each state of a Kripke structure has at least one successor
|1A169 Model Checking: CTL model checking 32/33

Semantics of CTL*

m 7(/) denotes the (i + 1)-st state of = and 7; denotes the path w(i)x(i+ 1) ...

Definition

Let K be a Kripke structure, s be its state, and = be its infinite path. The relations
K, s |= ¢, meaning that state s satisfies a state formula ¢, and K. = = ¢/, meaning
that path = satisfies a path formula), are defined inductively as follows.

K,sE=T

K,ska iff
K,s = —p iff
K,S':(p-]/\gOQ iff
K,s = Ed iff
K,mE o iff
K, & — iff
K,7T):1j}1/\’l,l)2 iff
K, & Xo iff

KowbEgiUgy iff

|1A169 Model Checking: CTL model checking

aclL(s)

K,slE e

Kas):¢1/\Kasl:§02

dr e Pk(s) . K,m Ev¢

K,m(0) =

K,m [

K,m={v1 ANK, =1

K,m =4

Ji>0.K,miEva A V0§j<i.K,7Tj):1lJ1

33/33

