IA169 Model Checking Symbolic model checking for CTL

Jan Strejček

Faculty of Informatics Masaryk University

Motivation

- \blacksquare system states typically correspond to variable assignments
- \blacksquare for finite systems, the number of variables is finite and their domains are finite
- we can assume that state is an assignment $s: V \rightarrow \{0, 1\}$, where V is a finite set of state variables

Motivation

- \blacksquare system states typically correspond to variable assignments
- \blacksquare for finite systems, the number of variables is finite and their domains are finite
- we can assume that state is an assignment $s: V \rightarrow \{0, 1\}$, where V is a finite set of state variables
- **a** a set of states can be described by propositional formulas
- \blacksquare for example, a set of states where the values of two bitvectors of length 2 agree (i.e. $x_1x_2 = y_1y_2$) can be represented by

Motivation

- \blacksquare system states typically correspond to variable assignments
- \blacksquare for finite systems, the number of variables is finite and their domains are finite
- we can assume that state is an assignment $s: V \rightarrow \{0, 1\}$, where V is a finite set of state variables
- **a** a set of states can be described by propositional formulas
- for example, a set of states where the values of two bitvectors of length 2 agree (i.e. $x_1x_2 = y_1y_2$) can be represented by

$$
(x_1 \wedge y_1 \wedge x_2 \wedge y_2) \vee (x_1 \wedge y_1 \wedge \neg x_2 \wedge \neg y_2) \vee \vee (\neg x_1 \wedge \neg y_1 \wedge x_2 \wedge y_2) \vee (\neg x_1 \wedge \neg y_1 \wedge \neg x_2 \wedge \neg y_2)
$$

or by $x_1 \Leftrightarrow y_1 \wedge x_2 \Leftrightarrow y_2$

- such a formula can be equivalently seen as a Boolean funcion
- **aternatively, a set can be described by a binary decision diagram (BDD)**

agenda

- **binary decision diagrams (BDDs) and their properties**
- Kripke structures represented by BDDs
- CTL model checking algorithm based on BDDs

source

Chapter 8 of E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith: *Model Checking*, Second Edition, MIT, 2018.

Binary decision diagrams (BDDs) and their properties

Binary decision diagrams (BDDs)

- *"one of the only really fundamental data structures that came out in the last twenty-five years"* [Donald Knuth, 2008]
- investigated by Randal Bryant in 1986
- can represent an arbitrary Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ or the set of models of a propositional formula φ

Binary decision diagrams (BDDs)

"one of the only really fundamental data structures that came out in the last twenty-five years" [Donald Knuth, 2008]

- investigated by Randal Bryant in 1986
- can represent an arbitrary Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ or the set of models of a propositional formula φ

Definition (binary decision diagram, BDD)

A binary decision diagram (BDD) is a finite rooted directed acyclic graph with two kinds of nodes and two kinds of edges:

- each terminal (i.e., a node without any successor) is labeled with 0 or 1,
- **e** each nonterminal node *v* is labeled with a variable $var(v)$ and has a low successor *low*(*v*) and a high successor *high*(*v*).
- \blacksquare *low*(*v*) = *w* is depicted by a dashed/dotted edge from *v* to *w*
- *high*(v) = *w* is depicted by a solid edge from *v* to *w*
- nodes are directly labeled with *var*(*v*), terminal nodes with 0 or 1

- **a** BDD with variables x_1, \ldots, x_n describes a Boolean function $f(x_1, \ldots, x_n)$
- **■** for $b_1, \ldots, b_n \in \{0, 1\}$, the value of $f(b_1, \ldots, b_n)$ is the value of the terminal node reached from the root by following
	- *low*(*v*) whenever *var*(*v*) = x_i and $b_i = 0$
	- *high*(*v*) whenever *var*(*v*) = x_i and $b_i = 1$

- **a** a BDD with variables x_1, \ldots, x_n describes a Boolean function $f(x_1, \ldots, x_n)$
- **■** for $b_1, \ldots, b_n \in \{0, 1\}$, the value of $f(b_1, \ldots, b_n)$ is the value of the terminal node reached from the root by following
	- *low*(*v*) whenever *var*(*v*) = x_i and $b_i = 0$
	- *high*(*v*) whenever *var*(*v*) = x_i and $b_i = 1$

Semantics of BDDs

Definition

Consider a BDD labeled with (some of) variables x_1, \ldots, x_n . Every node *v* of the BDD describes a Boolean function $f_v(x_1, \ldots, x_n)$ defined inductively as follows.

- if *v* is a terminal node labeled with 0, then $f_v(x_1, \ldots, x_n) = 0$
- if *v* is a terminal node labeled with 1, then $f_v(x_1, \ldots, x_n) = 1$
- if *v* is a nonterminal node labeled with a variable *xⁱ* , then

$$
f_{V}(x_1,\ldots,x_n)=(\neg x_i\wedge f_{low(V)}(x_1,\ldots,x_n))\vee (x_i\wedge f_{high(V)}(x_1,\ldots,x_n))
$$

The BDD represents the Boolean function corresponding to its root.

Semantics of BDDs

Definition

Consider a BDD labeled with (some of) variables x_1, \ldots, x_n . Every node *v* of the BDD describes a Boolean function $f_v(x_1, \ldots, x_n)$ defined inductively as follows.

- if *v* is a terminal node labeled with 0, then $f_v(x_1, \ldots, x_n) = 0$
- if *v* is a terminal node labeled with 1, then $f_v(x_1, \ldots, x_n) = 1$
- if *v* is a nonterminal node labeled with a variable *xⁱ* , then

$$
f_{V}(x_1,\ldots,x_n)=(\neg x_i\wedge f_{low(V)}(x_1,\ldots,x_n))\vee (x_i\wedge f_{high(V)}(x_1,\ldots,x_n))
$$

The BDD represents the Boolean function corresponding to its root.

Semantics of BDDs

Definition

Consider a BDD labeled with (some of) variables x_1, \ldots, x_n . Every node *v* of the BDD describes a Boolean function $f_v(x_1, \ldots, x_n)$ defined inductively as follows.

- if *v* is a terminal node labeled with 0, then $f_v(x_1, \ldots, x_n) = 0$
- if *v* is a terminal node labeled with 1, then $f_v(x_1, \ldots, x_n) = 1$
- if *v* is a nonterminal node labeled with a variable *xⁱ* , then

$$
f_{V}(x_1,\ldots,x_n)=(\neg x_i\wedge f_{low(V)}(x_1,\ldots,x_n))\vee (x_i\wedge f_{high(V)}(x_1,\ldots,x_n))
$$

The BDD represents the Boolean function corresponding to its root.

x y z z z y y 1 \bigcap

$$
f(x, y, z) =
$$

= $(x \wedge (y \iff z)) \vee (\neg x \wedge \neg z \wedge y)$

IA169 Model Checking: Symbolic model checking for CTL 14/22

Definition (ordered BDD)

A BDD is ordered if there exists a linear ordering < on its variables such that for every node *v* with a nonterminal successor *w* it holds *var*(*v*) < *var*(*w*).

Definition (ordered BDD)

A BDD is ordered if there exists a linear ordering < on its variables such that for every node *v* with a nonterminal successor *w* it holds *var*(*v*) < *var*(*w*).

A BDD is reduced if it does not contain any nonterminal node with identical low and high child and any isomorphic subgraphs.

A BDD is reduced if it does not contain any nonterminal node with identical low and high child and any isomorphic subgraphs.

a BDD can be reduced by repeated applications of the following steps

- 1 merge all terminal nodes with the same label
- 2 remove each nonterminal node *v* with $low(v) = high(v)$ and redirect all incomming edges to *low*(*v*)
- 3 merge each pair *v*, *w* of nonterminal nodes satisfying *var*(*v*) = *var*(*w*), $low(v) = low(w)$, and $high(v) = high(w)$

A BDD is reduced if it does not contain any nonterminal node with identical low and high child and any isomorphic subgraphs.

a BDD can be reduced by repeated applications of the following steps

- 1 merge all terminal nodes with the same label
- 2 remove each nonterminal node *v* with $low(v) = high(v)$ and redirect all incomming edges to *low*(*v*)
- 3 merge each pair *v*, *w* of nonterminal nodes satisfying *var*(*v*) = *var*(*w*), $low(v) = low(w)$, and $high(v) = high(w)$

A BDD is reduced if it does not contain any nonterminal node with identical low and high child and any isomorphic subgraphs.

a BDD can be reduced by repeated applications of the following steps

- 1 merge all terminal nodes with the same label
- 2 remove each nonterminal node *v* with $low(v) = high(v)$ and redirect all incomming edges to *low*(*v*)
- 3 merge each pair *v*, *w* of nonterminal nodes satisfying *var*(*v*) = *var*(*w*), $low(v) = low(w)$, and $high(v) = high(w)$

IA169 Model Checking: Symbolic model checking for CTL 20/22

Properties of BDDs

- we assume that all BDDs are reduced and ordered
- **F** for a fixed variable order, BDDs are a canonical representation of Boolean functions, i.e., two Boolean functions are equivalent (regardless their description) iff the corresponding BDDs are isomorphic
- **BDD** size heavily depends on considered variable order

some BDDs are exponential in the number of variables regardless their order

IA169 Model Checking: Symbolic model checking for CTL 21/22

variable instantiation

$$
f_{x_i \leftarrow b}(x_1, \ldots, x_n) = f(x_1, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_n)
$$

operation on the corresponding BDD

 $\mathbf{1}$ if the root *r* is labeled with x_i then the new BDD will have root

■
$$
low(r)
$$
 if $b = 0$

■
$$
high(r)
$$
 if $b = 1$

- 2 going from top to bottom, any edge leading to a nonterminal node *v* labeled with x_i is reconnected to
	- *low*(*v*) if $b = 0$

■
$$
high(v)
$$
 if $b = 1$

3 unreachable nodes are removed and BDD is reduced