IA169 Model Checking Bounded model checking and *k*-induction

Jan Strejček

Faculty of Informatics Masaryk University

- **BDDs represents all models of the corresponding propositional formulas**
- **n** in LTL model checking, we want to decide whether some violating run exists
- \blacksquare if we represent violating runs by a formula, we need to decide its satisfiability
- SAT solvers can efficiently decide it (despite NP-completeness of the problem)
- **BDDs represents all models of the corresponding propositional formulas**
- **n** in LTL model checking, we want to decide whether some violating run exists
- \blacksquare if we represent violating runs by a formula, we need to decide its satisfiability
- SAT solvers can efficiently decide it (despite NP-completeness of the problem)
- \blacksquare for satisfiable formulas, SAT solvers provide a model
- **a** a formula φ is true iff $\neg \varphi$ is not satisfiable

agenda

- \blacksquare finite Kripke structures represented by formulas
- **bounded model checking (BMC) for safety properties**
- BMC for LTL properties
- completeness of BMC
- *k*-induction

source

Chapter 10 of E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith: *Model Checking*, Second Edition, MIT, 2018.

Finite Kripke structures represented by formulas

Finite Kripke structures represented by formulas

- **E** each Kripke structure $K = (S, T, S_0, L)$ with finitely many states and a finite set of used atomic propositions can be encoded by propositional formulas
- states in *S* correspond to assignments $s: V \rightarrow \{0, 1\}$, where $V = \{x_1, \ldots, x_n\}$
- *S*₀ is identified with a formula $S_0(x_1, \ldots, x_n)$ satisfied by initial states
- **■** transition relation $T \subseteq S \times S$ is identified with a formula
	- $T(x_1, \ldots, x_n, x'_1, \ldots, x'_n)$
- we replace $L: S \rightarrow 2^{AP}$ with a formula $\rho(x_1, \ldots, x_n)$ for each relevant $\rho \in AF$

Finite Kripke structures represented by formulas

- **e** each Kripke structure $K = (S, T, S_0, L)$ with finitely many states and a finite set of used atomic propositions can be encoded by propositional formulas
- **states in** *S* **correspond to assignments** $s : V \rightarrow \{0, 1\}$ **, where** $V = \{x_1, \ldots, x_n\}$
- *S*₀ is identified with a formula $S_0(x_1, \ldots, x_n)$ satisfied by initial states
- **■** transition relation $T \subseteq S \times S$ is identified with a formula $T(x_1, \ldots, x_n, x'_1, \ldots, x'_n)$
- we replace $L: S \rightarrow 2^{AP}$ with a formula $\rho(x_1, \ldots, x_n)$ for each relevant $\rho \in AF$

 $S_0(x_1, x_2) = \neg x_1 \wedge \neg x_2$ *T*(*x*₁, *x*₂) = (¬*x*₁ ∧ ¬*x*₂ ∧ ¬*x*₁' ∧ *x*₂') ∨ (¬*x*₁ ∧ *x*₂ ∧ *x*₁') ∨ \vee (*x*₁ ∧ ¬*x*₂ ∧ ¬*x*₁′ ∧ ¬*x*₂[']) ∨ (*x*₁ ∧ *x*₂ ∧ ∧ *x*₁′ ∧ *x*₂[']) *p*(*x*₁, *x*₂) = ¬*x*₁ ∨ ¬*x*₂

IA169 Model Checking: Bounded model checking and *k*-induction 7/39

- we write \vec{x} instead of x_1, \ldots, x_n , i.e., we use $S_0(\vec{x}),\; T(\vec{x},\vec{x}')$ and $p(\vec{x})$
- \blacksquare when building formulas about more than one or two states, we will use $\vec{x}_0, \vec{x}_1, \ldots$, where \vec{x}_i stands for $x_{i1}, \ldots, x_{i n}$
- **■** for example, models of $T(\vec{x}_0, \vec{x}_1) \wedge T(\vec{x}_1, \vec{x}_2)$ represent paths of length 2
- **recall that we assume that each state has at least one successor**

Bounded model checking (BMC) for safety properties

Basic idea of bounded model checking (BMC)

- \blacksquare if a finite system violates a given property, it often has a short counterexample
- bounded model checking (BMC) analyzes runs up to the first *k* steps
- \blacksquare if an erroneous run is found, we know that the system violates the property; otherwise, we can increase *k* and try again

Basic idea of bounded model checking (BMC)

- \blacksquare if a finite system violates a given property, it often has a short counterexample
- bounded model checking (BMC) analyzes runs up to the first *k* steps
- \blacksquare if an erroneous run is found, we know that the system violates the property; otherwise, we can increase *k* and try again
- let us consider the safety property G*p*
- **the property is violated iff some run satisfies** $F\neg p$
- there is a run violating the property within the first *k* steps iff the following formula is satisfiable

$$
S_0(\vec{x}_0) \ \wedge \ \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \ \wedge \ \bigvee_{i=0}^{k} \neg p(\vec{x}_i)
$$

Basic idea of bounded model checking (BMC)

- \blacksquare if a finite system violates a given property, it often has a short counterexample
- bounded model checking (BMC) analyzes runs up to the first *k* steps
- \blacksquare if an erroneous run is found, we know that the system violates the property; otherwise, we can increase *k* and try again
- let us consider the safety property G*p*
- **the property is violated iff some run satisfies** $F\neg p$
- there is a run violating the property within the first *k* steps iff the following formula is satisfiable

$$
S_0(\vec{x}_0) \ \wedge \ \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \ \wedge \ \bigvee_{i=0}^{k} \neg p(\vec{x}_i)
$$

for example, for $k = 3$ the formula is

$$
S_0(\vec{x}_0) \wedge \mathcal{T}(\vec{x}_0,\vec{x}_1) \wedge \mathcal{T}(\vec{x}_1,\vec{x}_2) \wedge \mathcal{T}(\vec{x}_2,\vec{x}_3) \wedge \left(\neg \rho(\vec{x}_0) \vee \neg \rho(\vec{x}_1) \vee \neg \rho(\vec{x}_2) \vee \neg \rho(\vec{x}_3)\right)
$$

BMC for safety properties

bounded model checker for safety properties

- 1 set *k* to some initial (relatively low) number
- **2** construct the formula

$$
\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k} \neg p(\vec{x}_i)
$$

- ³ ask a SAT solver for satisfiability of ψ*^k*
- 4 if ψ_k is satisfiable, then report $K \not\models G \rho$ and construct a counterexample from the obtained model
- ⁵ if ψ*^k* is unsatisfiable, increase *k* and go to 2

BMC for safety properties

bounded model checker for safety properties

- 1 set *k* to some initial (relatively low) number
- 2 construct the formula

$$
\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k} \neg p(\vec{x}_i)
$$

- **3** ask a SAT solver for satisfiability of $ψ$ ^k
- 4 if ψ_k is satisfiable, then report $K \not\models G \rho$ and construct a counterexample from the obtained model
- ⁵ if ψ*^k* is unsatisfiable, increase *k* and go to 2

- **the size of** ψ_k is linear in *k*
- \blacksquare the method is not complete: it never ends for correct systems

- we want to check whether a (fair) Kripke structure *K* satisfies an LTL formula φ
- assume that we have a generalized Büchi automaton *B* representing a product of *K* and an automaton for $\neg \varphi$
- \blacksquare *K* \models _(*F*) φ iff $L(B) = \emptyset$
- **L**(*B*) \neq 0 iff there exists an accepting lasso-shaped run of *B* of the form $\tau \cdot \rho^{\omega}$
- bounded model checking looks for accepting runs $\tau \cdot \rho^{\omega}$ such that $|\tau \rho| < k$
- **i** if such a run exists, then $L(B) \neq \emptyset$ and thus $K \not\models_{(F)} \varphi$

assume that the GBA *B* is described by propositional formulas

- $S_0(\vec{x})$ is satisfied by initial states
- $T(\vec{x}, \vec{x}')$ represents the transiton relation (the letters on transitions are ignored as they have no influence on the existence of accepting runs)
- **■** for each F ^{*l*} ∈ F , F ^{*l*} (\vec{x}) </sup> represents the elements of accepting set F ^{*l*}

assume that the GBA *B* is described by propositional formulas

- $S_0(\vec{x})$ is satisfied by initial states
- $T(\vec{x}, \vec{x}')$ represents the transiton relation (the letters on transitions are ignored as they have no influence on the existence of accepting runs)
- **■** for each F ^{*l*} ∈ F , F ^{*l*} (\vec{x}) </sup> represents the elements of accepting set F ^{*l*}
- **there exists an accepting run** $\tau \rho^{\omega}$ such that $|\tau \rho| = k$ iff the following formula is satisfiable

$$
S_0(\vec{x}_0) \ \wedge \ \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \ \wedge \ \bigvee_{i=0}^{k-1} \left(\vec{x}_i = \vec{x}_k \wedge \bigwedge_{F_i \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_j(\vec{x}_j) \right)
$$

assume that the GBA *B* is described by propositional formulas

- $S_0(\vec{x})$ is satisfied by initial states
- $T(\vec{x}, \vec{x}')$ represents the transiton relation (the letters on transitions are ignored as they have no influence on the existence of accepting runs)
- **■** for each F ^{*l*} ∈ F , F ^{*l*} (\vec{x}) </sup> represents the elements of accepting set F ^{*l*}
- **there exists an accepting run** $\tau \rho^{\omega}$ such that $|\tau \rho| = k$ iff the following formula is satisfiable

$$
S_0(\vec{x}_0) \ \wedge \ \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \ \wedge \ \bigvee_{i=0}^{k-1} \left(\vec{x}_i = \vec{x}_k \wedge \bigwedge_{F_i \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_j(\vec{x}_j) \right)
$$

- assume that there exists an accepting run $\tau \cdot \rho^{\omega}$ such that $|\tau \rho| < k$
- then $\tau.\rho^\omega=\tau'.\rho'^\omega$ where $\tau'\rho'$ is the prefix of $\tau.\rho^\omega$ such that $|\tau'\rho'|=k$ and $|\rho'| = |\rho|$
- **hence, there exists an accepting run** $\tau \cdot \rho^{\omega}$ such that $|\tau \rho| < k$ iff ψ_k is satisfiable

$$
\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k-1} (\vec{x}_i = \vec{x}_k \wedge \bigwedge_{F_i \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_j(\vec{x}_j))
$$

- **assume that there exists an accepting run** $\tau \cdot \rho^{\omega}$ such that $|\tau \rho| < k$
- then $\tau.\rho^\omega=\tau'.\rho'^\omega$ where $\tau'\rho'$ is the prefix of $\tau.\rho^\omega$ such that $|\tau'\rho'|=k$ and $|\rho'| = |\rho|$
- hence, there exists an accepting run $\tau \cdot \rho^{\omega}$ such that $|\tau \rho| < k$ iff ψ_k is satisfiable

$$
\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k-1} (\vec{x}_i = \vec{x}_k \wedge \bigwedge_{F_i \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_j(\vec{x}_j))
$$

bounded model checker for LTL properties

- 1 set *k* to some initial (relatively low) number
- 2 construct the formula ψ_k and ask a SAT solver for its satisfiability
- **3** if ψ_k is satisfiable, then report $K \not\models_{(F)} \varphi$ and construct a counterexample from the obtained model
- 4 if ψ_k is unsatisfiable, increase *k* and go to 2

- **assume that there exists an accepting run** $\tau \cdot \rho^{\omega}$ such that $|\tau \rho| < k$
- then $\tau.\rho^\omega=\tau'.\rho'^\omega$ where $\tau'\rho'$ is the prefix of $\tau.\rho^\omega$ such that $|\tau'\rho'|=k$ and $|\rho'| = |\rho|$
- **hence, there exists an accepting run** $\tau \cdot \rho^{\omega}$ such that $|\tau \rho| \leq k$ iff ψ_k is satisfiable

$$
\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k-1} (\vec{x}_i = \vec{x}_k \wedge \bigwedge_{F_i \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_i(\vec{x}_j))
$$

bounded model checker for LTL properties

- 1 set *k* to some initial (relatively low) number
- 2 construct the formula ψ_k and ask a SAT solver for its satisfiability
- 3 if ψ_k is satisfiable, then report $K \not\models_{(F)} \varphi$ and construct a counterexample from the obtained model
- 4 if ψ_k is unsatisfiable, increase *k* and go to 2

the size of ψ_k **(when counting all common subformulas only once) is linear in k**

 \blacksquare the method is not complete: it never ends for correct systems

IA169 Model Checking: Bounded model checking and *k*-induction 22/39

Completeness of BMC

- is there any *k* such that if BMC does not find any erroneous path using *k* then the system has to be safe?
- we will study this question for safety property G_{*p*}
- is there any *k* such that if BMC does not find any erroneous path using *k* then the system has to be safe?
- we will study this question for safety property G_{*p*}

the number of states

- a state satisfying ¬*p* is reachable from initial states iff it is reachable in |*S*| − 1 steps
- \blacksquare if the formula ψ_k for $k = |S| 1$ is not satisfiable, then $K \models \textsf{G}p$
- if states are modeled by Boolean variables x_1, \ldots, x_n then $|\mathcal{S}| \leq 2^n$
- \blacksquare this bound is too large to be practical

diametr of the system graph

- **g** graph diametr *d* is the maximal length of all shortest paths between any two graph nodes
- **a** state satisfying $\neg p$ is reachable from initial states iff it is reachable in *d* steps
- **i** if the formula ψ_k for $k = d$ is not satisfiable, then $K \models G \rho$

diametr of the system graph

- **g** graph diametr *d* is the maximal length of all shortest paths between any two graph nodes
- **a** state satisfying $\neg p$ is reachable from initial states iff it is reachable in *d* steps
- **i** if the formula ψ_k for $k = d$ is not satisfiable, then $K \models G \rho$
- how to determine *d* without constructing the graph?
- \blacksquare asking the user is not realistic
- safe upper bounds (like $d \leq |S| 1$) are extremely overstated

Proof of correctness by induction

- **E** another way to prove that $K \models G\rho$ with SAT solvers
- we need to prove that p holds in all states reachable from the initial states

induction

- 1 base case: all initial states satisfy p , i.e., $S_0(\vec{x}) \wedge \neg p(\vec{x})$ is unsatisfiable
- 2 induction step: if a state satisfies *p*, then each its successor satisfies *p*, i.e., the following formula is unsatisfiable

$$
p(\vec{x}) \land T(\vec{x}, \vec{x}') \land \neg p(\vec{x}')
$$

Proof of correctness by induction

- **a** another way to prove that $K \models G\rho$ with SAT solvers
- **u** we need to prove that p holds in all states reachable from the initial states

induction

- **base case: all initial states satisfy** *p*, i.e., $S_0(\vec{x}) \land \neg p(\vec{x})$ is unsatisfiable
- 2 induction step: if a state satisfies *p*, then each its successor satisfies *p*, i.e., the following formula is unsatisfiable

$$
\rho(\vec{x})\wedge\mathcal{T}(\vec{x},\vec{x}')\wedge\neg\rho(\vec{x}')
$$

Proof of correctness by induction

- **a** another way to prove that $K \models G\rho$ with SAT solvers
- we need to prove that *p* holds in all states reachable from the initial states

induction

- **base case: all initial states satisfy** *p*, i.e., $S_0(\vec{x}) \land \neg p(\vec{x})$ is unsatisfiable
- 2 induction step: if a state satisfies *p*, then each its successor satisfies *p*, i.e., the following formula is unsatisfiable

$$
\rho(\vec{x})\wedge\mathcal{T}(\vec{x},\vec{x}')\wedge\neg\rho(\vec{x}')
$$

k-induction

1 base case: each path of length *k* starting in an initial state does not reach any state satisfying ¬*p*, i.e., the following formula is unsatisfiable

$$
S_0(\vec{x}_0) \ \wedge \ \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \ \wedge \ \bigvee_{i=0}^{k} \neg p(\vec{x}_i)
$$

2 induction step: if we prolong any path of length *k* over states satisfying *p* by one step, we reach a state satisfying *p*, i.e., the following formula is unsatisfiable

$$
\bigwedge_{i=0}^k \left(\rho(\vec{\mathsf{x}}_i) \land \mathcal{T}(\vec{\mathsf{x}}_i, \vec{\mathsf{x}}_{i+1})\right) \;\land\; \neg \rho(\vec{\mathsf{x}}_{k+1})
$$

the base case uses the formula from BMC: if it is satisfiable then $K \not\models G \rho$

k-induction

1 base case: each path of length *k* starting in an initial state does not reach any state satisfying ¬*p*, i.e., the following formula is unsatisfiable

$$
S_0(\vec{x}_0) \ \wedge \ \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \ \wedge \ \bigvee_{i=0}^{k} \neg p(\vec{x}_i)
$$

2 induction step: if we prolong any path of length *k* over states satisfying *p* by one step, we reach a state satisfying *p*, i.e., the following formula is unsatisfiable

$$
\bigwedge_{i=0}^k \left(\rho(\vec{\mathsf{x}}_i) \land \mathcal{T}(\vec{\mathsf{x}}_i, \vec{\mathsf{x}}_{i+1})\right) \;\land\; \neg \rho(\vec{\mathsf{x}}_{k+1})
$$

the base case uses the formula from BMC: if it is satisfiable then $K \not\models G \rho$

k-induction

1 base case: each path of length *k* starting in an initial state does not reach any state satisfying ¬*p*, i.e., the following formula is unsatisfiable

$$
S_0(\vec{x}_0) \ \wedge \ \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \ \wedge \ \bigvee_{i=0}^{k} \neg p(\vec{x}_i)
$$

2 induction step: if we prolong any path of length *k* over states satisfying *p* by one step, we reach a state satisfying *p*, i.e., the following formula is unsatisfiable

$$
\bigwedge_{i=0}^k \left(\rho(\vec{\mathsf{x}}_i) \land \mathcal{T}(\vec{\mathsf{x}}_i, \vec{\mathsf{x}}_{i+1})\right) \;\land\; \neg \rho(\vec{\mathsf{x}}_{k+1})
$$

the base case uses the formula from BMC: if it is satisfiable then $K \not\models G \rho$

- a state satisfying ¬*p* is reachable iff it is reachable by an acyclic path
- \blacksquare hence, the induction step can consider only acyclic paths
- 2 induction step: if we prolong any path of length *k* over states satisfying *p* by one step such that we get an acyclic path, we reach a state satisfying *p*, i.e., the following formula is unsatifiable

$$
\bigwedge_{i=0}^k \left(p(\vec{x}_i) \land \mathcal{T}(\vec{x}_i, \vec{x}_{i+1}) \right) \land \bigwedge_{0 \leq i < j \leq k+1} \vec{x}_i \neq \vec{x}_j \land \neg p(\vec{x}_{k+1})
$$

- a state satisfying ¬*p* is reachable iff it is reachable by an acyclic path
- \blacksquare hence, the induction step can consider only acyclic paths
- 2 induction step: if we prolong any path of length *k* over states satisfying *p* by one step such that we get an acyclic path, we reach a state satisfying *p*, i.e., the following formula is unsatifiable

$$
\bigwedge_{i=0}^k \left(p(\vec{x}_i) \land T(\vec{x}_i, \vec{x}_{i+1}) \right) \land \bigwedge_{0 \leq i < j \leq k+1} \vec{x}_i \neq \vec{x}_j \land \neg p(\vec{x}_{k+1})
$$

k-induction algorithm

k-induction algorithm for safety properties

- 1 set *k* to some initial (relatively low) number
- **2** construct the formulas

$$
\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k} \neg p(\vec{x}_i)
$$
\n
$$
\eta_k = \bigwedge_{i=0}^{k} \left(p(\vec{x}_i) \wedge T(\vec{x}_i, \vec{x}_{i+1}) \right) \wedge \bigwedge_{0 \le i < j \le k+1} \vec{x}_i \neq \vec{x}_j \wedge \neg p(\vec{x}_{k+1})
$$

- **3** ask a SAT solver for satisfiability of $ψ$ _k
- 4 if ψ_k is satisfiable, then report $K \not\models G\rho$ and construct a counterexample from the obtained model
- ⁵ if ψ*^k* is unsatisfiable, ask a SAT solver for satisfiability of η*^k*
- 6 if η_k is unsatisfiable, report $K \models G \rho$
- ⁷ if η*^k* is satisfiable, increase *k* and go to 2

k-induction algorithm

k-induction algorithm for safety properties

- 1 set *k* to some initial (relatively low) number
- **2** construct the formulas

$$
\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k} \neg p(\vec{x}_i)
$$
\n
$$
\eta_k = \bigwedge_{i=0}^{k} \left(p(\vec{x}_i) \wedge T(\vec{x}_i, \vec{x}_{i+1}) \right) \wedge \bigwedge_{0 \le i < j \le k+1} \vec{x}_i \neq \vec{x}_j \wedge \neg p(\vec{x}_{k+1})
$$

- **3** ask a SAT solver for satisfiability of $ψ$ _k
- 4 if ψ_k is satisfiable, then report $K \not\models G\rho$ and construct a counterexample from the obtained model
- ⁵ if ψ*^k* is unsatisfiable, ask a SAT solver for satisfiability of η*^k*
- 6 if η_k is unsatisfiable, report $K \models G \rho$
- ⁷ if η*^k* is satisfiable, increase *k* and go to 2

 \blacksquare it terminates as each finite system has a bound on the length of acyclic paths

IA169 Model Checking: Bounded model checking and *k*-induction 38/39

- BMC and *k*-induction are used in practice
- **the Lands CBMC, ESBMC, and ESBMC-kind are successful in SV-COMP**
- systems can be described not only by propositional formulas, but also by predicate formulas over a suitable theory
- SMT solvers are then used instead of SAT solvers