IA169 Model Checking

Bounded model checking and *k*-induction

Jan Strejček

Faculty of Informatics Masaryk University

Motivation

- BDDs represents all models of the corresponding propositional formulas
- in LTL model checking, we want to decide whether some violating run exists
- if we represent violating runs by a formula, we need to decide its satisfiability
- SAT solvers can efficiently decide it (despite NP-completeness of the problem)

Motivation

- BDDs represents all models of the corresponding propositional formulas
- in LTL model checking, we want to decide whether some violating run exists
- if we represent violating runs by a formula, we need to decide its satisfiability
- SAT solvers can efficiently decide it (despite NP-completeness of the problem)
- for satisfiable formulas, SAT solvers provide a model
- lacksquare a formula φ is true iff $\neg \varphi$ is not satisfiable

Agenda and sources

agenda

- finite Kripke structures represented by formulas
- bounded model checking (BMC) for safety properties
- BMC for LTL properties
- completeness of BMC
- k-induction

source

Chapter 10 of E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith: Model Checking, Second Edition, MIT, 2018.

Finite Kripke structures represented by formulas

- each Kripke structure $K = (S, T, S_0, L)$ with finitely many states and a finite set of used atomic propositions can be encoded by propositional formulas
- states in S correspond to assignments $s: V \to \{0,1\}$, where $V = \{x_1, \dots, x_n\}$
- S_0 is identified with a formula $S_0(x_1,...,x_n)$ satisfied by initial states
- transition relation $T \subseteq S \times S$ is identified with a formula $T(x_1, \ldots, x_n, x'_1, \ldots, x'_n)$
- we replace $L: S \to 2^{AP}$ with a formula $p(x_1, ..., x_n)$ for each relevant $p \in AP$

Finite Kripke structures represented by formulas

- each Kripke structure $K = (S, T, S_0, L)$ with finitely many states and a finite set of used atomic propositions can be encoded by propositional formulas
- states in S correspond to assignments $s: V \to \{0,1\}$, where $V = \{x_1, \dots, x_n\}$
- S_0 is identified with a formula $S_0(x_1,...,x_n)$ satisfied by initial states
- transition relation $T \subseteq S \times S$ is identified with a formula $T(x_1, ..., x_n, x'_1, ..., x'_n)$
- we replace $L: S \to 2^{AP}$ with a formula $p(x_1, ..., x_n)$ for each relevant $p \in AP$

$$S_{0}(x_{1}, x_{2}) = \neg x_{1} \wedge \neg x_{2}$$

$$T(x_{1}, x_{2}, x'_{1}, x'_{2}) = (\neg x_{1} \wedge \neg x_{2} \wedge \neg x'_{1} \wedge x'_{2}) \vee (\neg x_{1} \wedge x_{2} \wedge x'_{1}) \vee (x_{1} \wedge \neg x_{2} \wedge \neg x'_{1} \wedge \neg x'_{2}) \vee (x_{1} \wedge x_{2} \wedge \wedge x'_{1} \wedge x'_{2})$$

$$p(x_{1}, x_{2}) = \neg x_{1} \vee \neg x_{2}$$

Finite Kripke structures represented by formulas

- we write \vec{x} instead of x_1, \dots, x_n , i.e., we use $S_0(\vec{x})$, $T(\vec{x}, \vec{x}')$ and $p(\vec{x})$
- when building formulas about more than one or two states, we will use $\vec{x}_0, \vec{x}_1, \ldots$, where \vec{x}_i stands for x_{i1}, \ldots, x_{in}
- for example, models of $T(\vec{x}_0, \vec{x}_1) \wedge T(\vec{x}_1, \vec{x}_2)$ represent paths of length 2
- recall that we assume that each state has at least one successor

Basic idea of bounded model checking (BMC)

- if a finite system violates a given property, it often has a short counterexample
- bounded model checking (BMC) analyzes runs up to the first *k* steps
- \blacksquare if an erroneous run is found, we know that the system violates the property; otherwise, we can increase k and try again

Basic idea of bounded model checking (BMC)

- if a finite system violates a given property, it often has a short counterexample
- bounded model checking (BMC) analyzes runs up to the first *k* steps
- \blacksquare if an erroneous run is found, we know that the system violates the property; otherwise, we can increase k and try again
- let us consider the safety property Gp
- the property is violated iff some run satisfies $F \neg p$
- there is a run violating the property within the first *k* steps iff the following formula is satisfiable

$$S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k} \neg p(\vec{x}_i)$$

Basic idea of bounded model checking (BMC)

- if a finite system violates a given property, it often has a short counterexample
- bounded model checking (BMC) analyzes runs up to the first *k* steps
- \blacksquare if an erroneous run is found, we know that the system violates the property; otherwise, we can increase k and try again
- let us consider the safety property Gp
- the property is violated iff some run satisfies $F \neg p$
- there is a run violating the property within the first *k* steps iff the following formula is satisfiable

$$S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k} \neg p(\vec{x}_i)$$

• for example, for k = 3 the formula is

$$S_0(\vec{x}_0) \wedge T(\vec{x}_0, \vec{x}_1) \wedge T(\vec{x}_1, \vec{x}_2) \wedge T(\vec{x}_2, \vec{x}_3) \wedge \left(\neg p(\vec{x}_0) \lor \neg p(\vec{x}_1) \lor \neg p(\vec{x}_2) \lor \neg p(\vec{x}_3)\right)$$

BMC for safety properties

bounded model checker for safety properties

- 1 set k to some initial (relatively low) number
- 2 construct the formula

$$\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^k \neg p(\vec{x}_i)$$

- f 3 ask a SAT solver for satisfiability of ψ_k
- 4 if ψ_k is satisfiable, then report $K \not\models \mathsf{G}p$ and construct a counterexample from the obtained model
- **5** if ψ_k is unsatisfiable, increase k and go to 2

BMC for safety properties

bounded model checker for safety properties

- 1 set *k* to some initial (relatively low) number
- 2 construct the formula

$$\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^k \neg p(\vec{x}_i)$$

- f 3 ask a SAT solver for satisfiability of ψ_k
- 4 if ψ_k is satisfiable, then report $K \not\models Gp$ and construct a counterexample from the obtained model
- 5 if ψ_k is unsatisfiable, increase k and go to 2

- the size of ψ_k is linear in k
- the method is not complete: it never ends for correct systems

- lacktriangle we want to check whether a (fair) Kripke structure K satisfies an LTL formula φ
- **a** assume that we have a generalized Büchi automaton B representing a product of K and an automaton for $\neg \varphi$
- $K \models_{(F)} \varphi \text{ iff } L(B) = \emptyset$
- $L(B) \neq \emptyset$ iff there exists an accepting lasso-shaped run of B of the form $\tau . \rho^{\omega}$
- **bounded model checking looks for accepting runs** $\tau . \rho^{\omega}$ **such that** $|\tau \rho| \leq k$
- if such a run exists, then $L(B) \neq \emptyset$ and thus $K \not\models_{(F)} \varphi$

assume that the GBA B is described by propositional formulas

- $S_0(\vec{x})$ is satisfied by initial states
- $T(\vec{x}, \vec{x}')$ represents the transiton relation (the letters on transitions are ignored as they have no influence on the existence of accepting runs)
- for each $F_l \in \mathcal{F}$, $F_l(\vec{x})$ represents the elements of accepting set F_l

assume that the GBA B is described by propositional formulas

- $S_0(\vec{x})$ is satisfied by initial states
- $T(\vec{x}, \vec{x}')$ represents the transiton relation (the letters on transitions are ignored as they have no influence on the existence of accepting runs)
- for each $F_l \in \mathcal{F}$, $F_l(\vec{x})$ represents the elements of accepting set F_l
- there exists an accepting run $\tau . \rho^{\omega}$ such that $|\tau \rho| = k$ iff the following formula is satisfiable

$$S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k-1} \left(\vec{x}_i = \vec{x}_k \wedge \bigwedge_{F_l \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_l(\vec{x}_j) \right)$$

assume that the GBA B is described by propositional formulas

- $S_0(\vec{x})$ is satisfied by initial states
- $T(\vec{x}, \vec{x}')$ represents the transiton relation (the letters on transitions are ignored as they have no influence on the existence of accepting runs)
- for each $F_l \in \mathcal{F}$, $F_l(\vec{x})$ represents the elements of accepting set F_l
- there exists an accepting run $\tau . \rho^{\omega}$ such that $|\tau \rho| = k$ iff the following formula is satisfiable

$$S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k-1} \left(\vec{x}_i = \vec{x}_k \wedge \bigwedge_{F_l \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_l(\vec{x}_j) \right)$$

- **assume that there exists an accepting run** $\tau . \rho^{\omega}$ **such that** $|\tau \rho| < k$
- then $\tau.\rho^{\omega}=\tau'.\rho'^{\omega}$ where $\tau'\rho'$ is the prefix of $\tau.\rho^{\omega}$ such that $|\tau'\rho'|=k$ and $|\rho'|=|\rho|$
- hence, there exists an accepting run $\tau.\rho^{\omega}$ such that $|\tau\rho| \leq k$ iff ψ_k is satisfiable

$$\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k-1} \left(\vec{x}_i = \vec{x}_k \wedge \bigwedge_{F_l \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_l(\vec{x}_j) \right)$$

- **a** assume that there exists an accepting run $\tau . \rho^{\omega}$ such that $|\tau \rho| < k$
- then $\tau.\rho^{\omega}=\tau'.\rho'^{\omega}$ where $\tau'\rho'$ is the prefix of $\tau.\rho^{\omega}$ such that $|\tau'\rho'|=k$ and $|\rho'|=|\rho|$
- hence, there exists an accepting run $\tau.\rho^{\omega}$ such that $|\tau\rho| \leq k$ iff ψ_k is satisfiable

$$\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k-1} \left(\vec{x}_i = \vec{x}_k \wedge \bigwedge_{F_l \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_l(\vec{x}_j) \right)$$

bounded model checker for LTL properties

- set k to some initial (relatively low) number
- **2** construct the formula ψ_k and ask a SAT solver for its satisfiability
- if ψ_k is satisfiable, then report $K \not\models_{(F)} \varphi$ and construct a counterexample from the obtained model
- 4 if ψ_k is unsatisfiable, increase k and go to 2

- lacksquare assume that there exists an accepting run $au.
 ho^\omega$ such that | au
 ho| < k
- then $\tau.\rho^{\omega}=\tau'.\rho'^{\omega}$ where $\tau'\rho'$ is the prefix of $\tau.\rho^{\omega}$ such that $|\tau'\rho'|=k$ and $|\rho'|=|\rho|$
- hence, there exists an accepting run $\tau.\rho^{\omega}$ such that $|\tau\rho| \leq k$ iff ψ_k is satisfiable

$$\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k-1} \left(\vec{x}_i = \vec{x}_k \wedge \bigwedge_{F_l \in \mathcal{F}} \bigvee_{j=i}^{k-1} F_l(\vec{x}_j) \right)$$

bounded model checker for LTL properties

- set k to some initial (relatively low) number
- **2** construct the formula ψ_k and ask a SAT solver for its satisfiability
- 3 if ψ_k is satisfiable, then report $K \not\models_{(F)} \varphi$ and construct a counterexample from the obtained model
- 4 if ψ_k is unsatisfiable, increase k and go to 2
- the size of ψ_k (when counting all common subformulas only once) is linear in k
- the method is not complete: it never ends for correct systems

- is there any *k* such that if BMC does not find any erroneous path using *k* then the system has to be safe?
- we will study this question for safety property Gp

- is there any *k* such that if BMC does not find any erroneous path using *k* then the system has to be safe?
- we will study this question for safety property Gp

the number of states

- **a** state satisfying $\neg p$ is reachable from initial states iff it is reachable in |S|-1 steps
- if the formula ψ_k for k = |S| 1 is not satisfiable, then $K \models Gp$
- if states are modeled by Boolean variables x_1, \ldots, x_n then $|S| \le 2^n$
- this bound is too large to be practical

diametr of the system graph

- graph diametr d is the maximal length of all shortest paths between any two graph nodes
- \blacksquare a state satisfying $\neg p$ is reachable from initial states iff it is reachable in d steps
- if the formula ψ_k for k = d is not satisfiable, then $K \models Gp$

diametr of the system graph

- graph diametr d is the maximal length of all shortest paths between any two graph nodes
- \blacksquare a state satisfying $\neg p$ is reachable from initial states iff it is reachable in d steps
- if the formula ψ_k for k = d is not satisfiable, then $K \models Gp$
- how to determine *d* without constructing the graph?
- asking the user is not realistic
- safe upper bounds (like $d \le |S| 1$) are extremely overstated

Proof of correctness by induction

- another way to prove that $K \models Gp$ with SAT solvers
- \blacksquare we need to prove that p holds in all states reachable from the initial states

induction

- **1** base case: all initial states satisfy p, i.e., $S_0(\vec{x}) \land \neg p(\vec{x})$ is unsatisfiable
- induction step: if a state satisfies p, then each its successor satisfies p, i.e., the following formula is unsatisfiable

$$p(\vec{x}) \wedge T(\vec{x}, \vec{x}') \wedge \neg p(\vec{x}')$$

Proof of correctness by induction

- \blacksquare another way to prove that $K \models Gp$ with SAT solvers
- \blacksquare we need to prove that p holds in all states reachable from the initial states

induction

- **1** base case: all initial states satisfy p, i.e., $S_0(\vec{x}) \land \neg p(\vec{x})$ is unsatisfiable
- induction step: if a state satisfies p, then each its successor satisfies p, i.e., the following formula is unsatisfiable

$$p(\vec{x}) \wedge T(\vec{x}, \vec{x}') \wedge \neg p(\vec{x}')$$

Proof of correctness by induction

- **a** another way to prove that $K \models Gp$ with SAT solvers
- \blacksquare we need to prove that p holds in all states reachable from the initial states

induction

- **1** base case: all initial states satisfy p, i.e., $S_0(\vec{x}) \land \neg p(\vec{x})$ is unsatisfiable
- induction step: if a state satisfies p, then each its successor satisfies p, i.e., the following formula is unsatisfiable

$$p(\vec{x}) \wedge T(\vec{x}, \vec{x}') \wedge \neg p(\vec{x}')$$

k-induction

base case: each path of length k starting in an initial state does not reach any state satisfying $\neg p$, i.e., the following formula is unsatisfiable

$$S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^k \neg p(\vec{x}_i)$$

induction step: if we prolong any path of length k over states satisfying p by one step, we reach a state satisfying p, i.e., the following formula is unsatisfiable

$$\bigwedge_{i=0}^{k} \left(p(\vec{x}_i) \wedge T(\vec{x}_i, \vec{x}_{i+1}) \right) \wedge \neg p(\vec{x}_{k+1})$$

 $lue{}$ the base case uses the formula from BMC: if it is satisfiable then $K \not\models \mathsf{G}p$

k-induction

base case: each path of length k starting in an initial state does not reach any state satisfying $\neg p$, i.e., the following formula is unsatisfiable

$$S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k} \neg p(\vec{x}_i)$$

induction step: if we prolong any path of length k over states satisfying p by one step, we reach a state satisfying p, i.e., the following formula is unsatisfiable

$$\bigwedge_{i=0}^{k} \left(p(\vec{x}_i) \wedge T(\vec{x}_i, \vec{x}_{i+1}) \right) \wedge \neg p(\vec{x}_{k+1})$$

 $lue{}$ the base case uses the formula from BMC: if it is satisfiable then $K \not\models \mathsf{G}p$

IA169 Model Checking: Bounded model checking and k-induction

k-induction

base case: each path of length k starting in an initial state does not reach any state satisfying $\neg p$, i.e., the following formula is unsatisfiable

$$S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^{k} \neg p(\vec{x}_i)$$

2 induction step: if we prolong any path of length k over states satisfying p by one step, we reach a state satisfying p, i.e., the following formula is unsatisfiable

$$\bigwedge_{i=0}^{k} \left(p(\vec{x}_i) \wedge T(\vec{x}_i, \vec{x}_{i+1}) \right) \wedge \neg p(\vec{x}_{k+1})$$

the base case uses the formula from BMC: if it is satisfiable then $K \not\models Gp$

induction step fails for each *k*

- **a** a state satisfying $\neg p$ is reachable iff it is reachable by an acyclic path
- hence, the induction step can consider only acyclic paths
- 2 induction step: if we prolong any path of length k over states satisfying p by one step such that we get an acyclic path, we reach a state satisfying p, i.e., the following formula is unsatifiable

$$\bigwedge_{i=0}^{k} \left(p(\vec{x}_i) \wedge T(\vec{x}_i, \vec{x}_{i+1}) \right) \wedge \bigwedge_{0 \leq i < j \leq k+1} \vec{x}_i \neq \vec{x}_j \wedge \neg p(\vec{x}_{k+1})$$

- \blacksquare a state satisfying $\neg p$ is reachable iff it is reachable by an acyclic path
- hence, the induction step can consider only acyclic paths
- 2 induction step: if we prolong any path of length k over states satisfying p by one step such that we get an acyclic path, we reach a state satisfying p, i.e., the following formula is unsatifiable

$$\bigwedge_{i=0}^{k} \left(p(\vec{x}_i) \wedge T(\vec{x}_i, \vec{x}_{i+1}) \right) \wedge \bigwedge_{0 \leq i < j \leq k+1} \vec{x}_i \neq \vec{x}_j \wedge \neg p(\vec{x}_{k+1})$$

k-induction algorithm

k-induction algorithm for safety properties

- set k to some initial (relatively low) number
- 2 construct the formulas

$$\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^k \neg p(\vec{x}_i)$$

$$\eta_k = \bigwedge_{i=0}^k \left(p(\vec{x}_i) \wedge T(\vec{x}_i, \vec{x}_{i+1}) \right) \wedge \bigwedge_{0 \leq i < j \leq k+1} \vec{x}_i \neq \vec{x}_j \wedge \neg p(\vec{x}_{k+1})$$

- 3 ask a SAT solver for satisfiability of ψ_k
- 4 if ψ_k is satisfiable, then report $K \not\models Gp$ and construct a counterexample from the obtained model
- ${f 5}$ if ψ_k is unsatisfiable, ask a SAT solver for satisfiability of η_k
- **6** if η_k is unsatisfiable, report $K \models \mathsf{G}p$
- 7 if η_k is satisfiable, increase k and go to 2

k-induction algorithm

k-induction algorithm for safety properties

- 1 set k to some initial (relatively low) number
- 2 construct the formulas

$$\psi_k = S_0(\vec{x}_0) \wedge \bigwedge_{i=0}^{k-1} T(\vec{x}_i, \vec{x}_{i+1}) \wedge \bigvee_{i=0}^k \neg p(\vec{x}_i)$$

$$\eta_k = \bigwedge_{i=0}^k \left(p(\vec{x}_i) \wedge T(\vec{x}_i, \vec{x}_{i+1}) \right) \wedge \bigwedge_{0 \leq i < j \leq k+1} \vec{x}_i \neq \vec{x}_j \wedge \neg p(\vec{x}_{k+1})$$

- f 3 ask a SAT solver for satisfiability of ψ_k
- 4 if ψ_k is satisfiable, then report $K \not\models Gp$ and construct a counterexample from the obtained model
- ${f 5}$ if ψ_k is unsatisfiable, ask a SAT solver for satisfiability of η_k
- **6** if η_k is unsatisfiable, report $K \models \mathsf{G}p$
- 7 if η_k is satisfiable, increase k and go to 2
- it terminates as each finite system has a bound on the length of acyclic paths

Final notes

- BMC and *k*-induction are used in practice
- tools CBMC, ESBMC, and ESBMC-kind are successful in SV-COMP
- systems can be described not only by propositional formulas, but also by predicate formulas over a suitable theory
- SMT solvers are then used instead of SAT solvers