Neural Language Modelling PA154 Language Modeling (10.1) Pavel Rychlý pary@fi.muni.cz April 30,2024 Deep Learning ■ deep neural networks ■ many Layers ■ trained on big data ■ using advanced hardware: GPU,TPU ■ supervised, semi-supervised or unsupervised Pavel Rychly • Neural Language Modelling • April 30, 2024 2/26 Neuron ■ basic element of neural networks ■ many inputs (numbers), weights (numbers) ■ activation (transfer) function (threshold) ■ one output: y = ct(Y1T=o wjxj + 3/26 Neuron on an embedding ■ input: embedding (vector of nubmers) ■ output: y = criYljLo wjxj + b) ■ Linear classifier ■ hyperpLane cutting the vector space ■ selects one feature Pavel Rychly • Neural Language Modelling • April 30, 2024 4/26 Neural Networks ■ Input/Hidden/Output Layer ■ Input/output = vector of numbers ■ hidden Layer = matrix of parameters (numbers) m Yk =