
PA160: Net-Centric Computing II.

Distributed Systems

Luděk Matyska

Slides by: Tomáš Rebok

Spring 2024

Luděk Matyska · Distributed Systems · Spring 2024 1 / 57



Lecture overview

Lecture overview

Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)

Web Services

Luděk Matyska · Distributed Systems · Spring 2024 2 / 57



Distributed Systems

Lecture overview

Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)

Web Services

Luděk Matyska · Distributed Systems · Spring 2024 3 / 57



Distributed Systems

Distributed Systems – Definition

Distributed System by Coulouris, Dollimore, and Kindberg
A system in which hardware and software components located at networked
computers communicate and coordinate their actions only by message
passing.

Distributed System by Tanenbaum and Steen
A collection of independent computers that appears to its users as a single
coherent system.

the independent/autonomous machines are interconnected by
communication networks and equipped with software systems
designed to produce an integrated and consistent computing
environment

Core objective of a distributed system: resource sharing
Luděk Matyska · Distributed Systems · Spring 2024 4 / 57



Distributed Systems Key characteristics

Distributed Systems – Key characteristics
Autonomicity – there are several autonomous computational entities, each
of which has its own local memory
Heterogeneity – the entities may differ in many ways

computer HW (different data types’ representation), network
interconnection, operating systems (different APIs), programming
languages (different data structures), implementations by different
developers, etc.

Concurrency – concurrent (distributed) program execution and resource
access
No global clock – programs (distributed components) coordinate their
actions by exchanging messages

message communication can be affected by delays, can suffer from
variety of failures, and is vulnerable to security attacks

Independent failures – each component of the system can fail
independently, leaving the others still running (and possibly not informed
about the failure)

How to know/differ the states when a network has failed or became
unusually slow?
How to know immediately if a remote server crashed?

Luděk Matyska · Distributed Systems · Spring 2024 5 / 57



Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

What do we want from a Distributed System (DS)?
Resource Sharing
Openness
Concurrency
Scalability
Fault Tolerance
Security
Transparency

Luděk Matyska · Distributed Systems · Spring 2024 6 / 57



Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

Resource Sharing
main motivating factor for constructing DSs
is should be easy for the users (and applications) to access
remote resources, and to share them in a controlled and efficient
way

each resource must be managed by a software that provides
interfaces which enable the resource to be manipulated by clients
resource = anything you can imagine (e.g., storage facilities, data,
files, Web pages, etc.)

Luděk Matyska · Distributed Systems · Spring 2024 7 / 57



Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

Openness
whether the system can be extended and re-implemented in
various ways and new resource-sharing services can be added
and made available for use by a variety of client programs

specification and documentation of key software interfaces must
be published

using an Interface Definition Language (IDL)

involves HW extensibility as well
i.e., the ability to add hardware from different vendors

Luděk Matyska · Distributed Systems · Spring 2024 8 / 57



Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

Concurrency
every resource in a DS must be designed to be safe in a
concurrent environment

applies not only to servers, but to objects in applications as well

ensured by standard techniques, like semaphores

Luděk Matyska · Distributed Systems · Spring 2024 9 / 57



Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

Scalability
a DS is scalable if the cost of adding a user (or resource) is a
constant amount in terms of resources that must be added

and is able to utilize the extra hardware/software efficiently
and remains manageable

Luděk Matyska · Distributed Systems · Spring 2024 10 / 57



Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

Fault Tolerance
a characteristic where a distributed system provides an
appropriately handling of errors that occurred in the system

the failures can be detected (sometimes hard or even impossible),
masked (made hidden or less severe), or tolerated

achieved by deploying two approaches: hardware redundancy and
software recovery

Security
involves confidentiality, integrity, authentication, and availability

Luděk Matyska · Distributed Systems · Spring 2024 11 / 57



Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues
Transparency

certain aspects of the DS should be made invisible to the user /
application programmer

i.e., the system is perceived as a whole rather than a collection of
independent components

several forms of transparency:
Access transparency – enables local and remote resources to be
accessed using identical operations
Location transparency – enables resources to be accessed without
knowledge of their location
Concurrency transparency – enables several processes to operate
concurrently using shared resources without interference between
them
Replication transparency – enables multiple instances of resources to
be used to increase reliability and performance

without knowledge of the replicas by users / application
programmers

Luděk Matyska · Distributed Systems · Spring 2024 12 / 57



Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues
Transparency II.

forms of transparency cont’d.:
Failure transparency – enables the concealment of faults,
allowing users and application programs to complete their tasks
despite of a failure of HW/SW components
Mobility/migration transparency – allows the movement of
resources and clients within a system without affecting the
operation of users or programs
Performance transparency – allows the system to be reconfigured
to improve performance as loads vary
Scaling transparency – allows the system and applications to
expand in scale without changes to the system structure or
application algorithms

Luděk Matyska · Distributed Systems · Spring 2024 13 / 57



Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models
defines the way in which the components of systems interact
with one another, and
defines the way in which the components are mapped onto an
underlying network of computers

the overall goal is to ensure that the structure will meet present
and possibly future demands

the major concerns are to make system reliable, manageable,
adaptable, and cost-effective

principal architecture models:
client-server model – most important and most widely used

a service may be further provided by multiple servers
the servers may in turn be clients for another servers
proxy servers (caches) may be employed to increase availability
and performance

peer processes – all the processes play similar roles
based either on structured (Chord, CAN, etc.), unstructured, or
hybrid architectures

Luděk Matyska · Distributed Systems · Spring 2024 14 / 57



Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models
Client-Server model

Luděk Matyska · Distributed Systems · Spring 2024 15 / 57



Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models
Client-Server model – A Service provided by Multiple Servers

Luděk Matyska · Distributed Systems · Spring 2024 16 / 57



Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models
Peer processes

Luděk Matyska · Distributed Systems · Spring 2024 17 / 57



Distributed Systems Inter-process Communication

Distributed Systems – Inter-process Communication
(IPC)

the processes (components) need to communicate
the communication may be:

synchronous – both send and receive are blocking operations
asynchronous – send is non-blocking and receive can have
blocking (more common) and non-blocking variants

the simplest forms of communication: UDP and TCP sockets

Luděk Matyska · Distributed Systems · Spring 2024 18 / 57



Distributed Systems Inter-process Communication

Distributed Systems – Inter-process Communication
UDP and TCP sockets
UDP/TCP sockets

provide unreliable/reliable communication services
+ the complete control over the communication lies in the hands

of applications
– too primitive to be used in developing a distributed system

software
higher-level facilities (marshalling/unmarshalling data, error
detection, error recovery, etc.) must be built from scratch by
developers on top of the existing socket primitive facilities
force read/write mechanism instead of a procedure call

– another problem arises when the software needs to be used in a
platform different from where it was developed

the target platform may provide different socket implementation
⇒ these issues are eliminated by the use of a Middleware
Luděk Matyska · Distributed Systems · Spring 2024 19 / 57



Middleware

Lecture overview

Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)

Web Services

Luděk Matyska · Distributed Systems · Spring 2024 20 / 57



Middleware

Middleware
a software layer that provides a programming abstraction as
well as masks the heterogeneity of the underlying networks,
hardware, operating systems, and programming languages

⇒ provides transparency services
represented by processes/objects that interact with each other to
implement communication and resource sharing support
provides building blocks for the construction of SW components that
can work with one another

middleware examples:
Sun RPC (ONC RPC)
DCE RPC
MS COM/DCOM
Java RMI
CORBA
etc.

Luděk Matyska · Distributed Systems · Spring 2024 21 / 57



Middleware

Middleware – Basic Services
Directory services – services required to locate application
services and resources, and route messages

≈ service discovery
Data encoding services – uniform data representation services for
dealing with incompatibility problems on remote systems

e.g., Sun XDR, ISO’s ASN.1, CORBA’s CDR, XML, etc.
data marshalling/unmarshalling

Security services – provide inter-application client-server security
mechanisms
Time services – provide a universal format for representing time
on different platforms (possibly located in various time zones) in
order to keep synchronisation among application processes
Transaction services – provide transaction semantics to support
commit, rollback, and recovery mechanisms

Luděk Matyska · Distributed Systems · Spring 2024 22 / 57



Middleware

Middleware
Basic Services – A Need for Data Encoding Services
Data encoding services are required, because remote machines may have:

different byte ordering
different sizes of integers and other types
different floating point representations
different character sets
alignment requirements

Luděk Matyska · Distributed Systems · Spring 2024 23 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
very simple idea similar to a well-known procedure call mechanism

a client sends a request and blocks until a remote server sends a
response

the goal is to allow distributed programs to be written in the same style as
conventional programs for centralised computer systems

while being transparent – the programmer need not be aware that the
called procedure is executing on a local or a remote computer

the idea:
the remote procedure is represented as a stub on the client side

behaves like a local procedure, but rather than placing the
parameters into registers, it packs them into a message, issues a
send primitive, and blocks itself waiting for a reply

the server passes the arrived message to a server stub (known as
skeleton as well)

the skeleton unpacks the parameters and calls the procedure in a
conventional manner
the results are returned to the skeleton, which packs them into a
message directed to the client stub

Luděk Matyska · Distributed Systems · Spring 2024 24 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)

Luděk Matyska · Distributed Systems · Spring 2024 25 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
The remote procedure call in detail

Luděk Matyska · Distributed Systems · Spring 2024 26 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Components

client program, client stub
communication modules
server stub, service procedure
dispatcher – selects one of the server stub procedures according to the procedure identifier in the
request message

Sun RPC: the procedures are identified by:
program number – can be obtained from a central authority to allow every program to have its own
unique number
procedure number – the identifier of the particular procedure within the program
version number – changes when a procedure signature changes

Luděk Matyska · Distributed Systems · Spring 2024 27 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Location Services – Portmapper
Clients need to know the port number of a service provided by the
server ⇒ Portmapper

a server registers its program#, version#, and port# to the local
portmapper
a client finds out the port# by sending a request

the portmapper listens on a well-known port (111)
the particular procedure required is identified in the subsequent
procedure call

Luděk Matyska · Distributed Systems · Spring 2024 28 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Parameters passing
How to pass parameters to remote procedures?

pass by value – easy: just copy data to the network message
pass by reference – makes no sense without shared memory

Pass by reference: the steps
1. copy referenced items (marshalled) to a message buffer
2. ship them over, unmarshal data at server
3. pass local pointer to server stub function
4. send new values back

to support complex structures:
copy the structure into pointerless representation
transmit
reconstruct the structure with local pointers on the server

Luděk Matyska · Distributed Systems · Spring 2024 29 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Parameters passing – eXternal Data Representation (XDR)

Sun RPC: to avoid compatibility problems, the eXternal Data
Representation (XDR) is used

XDR primitive functions examples:
xdr int(), xdr char(), xdr u short(), xdr bool(),
xdr long(), xdr u int(), xdr wrapstring(),
xdr short(), xdr enum(), xdr void()

XDR aggregation functions:
xdr array(), xdr string(), xdr union(), xdr vector(),
xdr opaque()

only a single input parameter is allowed in a procedure call
⇒ procedures requiring multiple parameters must include them
as components of a single structure

Luděk Matyska · Distributed Systems · Spring 2024 30 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong I.

local procedure calls do not fail
if they core dump, entire process dies

there are more opportunities for errors with RPC
server could generate an error
problems in network (lost/delayed requests/replies)
server crash
client might crash while server is still executing code for it

transparency breaks here
applications should be prepared to deal with RPC failures

Semantics of local procedure calls: exactly once
difficult to achieve with RPC

Luděk Matyska · Distributed Systems · Spring 2024 31 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong II.
Four remote calls semantics available in RPC:

at-least-once semantic
client keeps trying sending the message until a reply has been
received

failure is assumed after n re-sends

guarantees that the call has been made “at least once”, but possibly
multiple times
ideal for idempotent operations

at-most-once semantic
client gives up immediately and reports back a failure
guarantees that the call has been made “at most once”, but possibly
none at all

exactly-once semantic
the most desirable, but the most difficult to implement

maybe semantic
no message delivery guarantees are provided at all
(easy to implement)

Luděk Matyska · Distributed Systems · Spring 2024 32 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong III.

Figure: Message-passing semantics. (a) at-least-once; (b) exactly-once.
Luděk Matyska · Distributed Systems · Spring 2024 33 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong IV. – Complications

1. it is necessary to understand the application
idempotent functions – in the case of a failure, the message may be
retransmitted and re-run without a harm
non-idempotent functions – has side-effects ⇒ the retransmission has
to be controlled by the server

the duplicity request (retransmission) has to be detected
once detected, the server procedure is NOT re-run; just the results are resent (if
available in a server cache)

2. in the case of a server crash, the order of execution vs. crash matters

3. in the case of a client crash, the procedure keeps running on the server
consumes resources (e.g., CPU time), possesess resources (e.g., locked files), etc.

may be overcome by employing soft-state principles
keep-alive messages

Luděk Matyska · Distributed Systems · Spring 2024 34 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Code Generation I.

RPC drawbacks:
complex API, not easy to debug
the use of XDR is difficult

but, it’s often used in a similar way
⇒ the server/client code can be automatically generated

assumes well-defined interfaces (IDL)
the application programmer has to supply the following:

interface definition file – defines the interfaces (data structures,
procedure names, and parameters) of the remote procedures that
are offered by the server
client program – defines the user interfaces, the calls to the
remote procedures of the server, and the client side processing
functions
server program – implements the calls offered by the server

compilers:
rpcgen for C/C++, jrpcgen for Java

Luděk Matyska · Distributed Systems · Spring 2024 35 / 57



Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Code Generation II.

Luděk Matyska · Distributed Systems · Spring 2024 36 / 57



Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)
as the popularity of object technology increased, techniques
were developed to allow calls to remote objects instead of
remote procedures only

⇒ Remote Method Invocation (RMI)
essentially the same as the RPC, except that it operates on
objects instead of applications/procedures

the RMI model represents a distributed object application
it allows an object inside a JVM (a client) to invoke a method on
an object running on a remote JVM (a server) and have the results
returned to the client

the server application creates an object and makes it accesible
remotely (i.e., registers it)
the client application receives a reference to the object on the server
and invokes methods on it

the reference is obtained through looking up in the registry
important: a method invocation on a remote object has the same
syntax as a method invocation on a local object

Luděk Matyska · Distributed Systems · Spring 2024 37 / 57



Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)
Architecture I.
The interface, through which the client and server interact, is (similarly to
RPC) provided by stubs and skeletons:

Luděk Matyska · Distributed Systems · Spring 2024 38 / 57



Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)
Architecture II.
Two fundamental concepts as the heart of distributed object model:

remote object reference – an identifier that can be used throughout a
distributed system to refer to a particular unique remote object

its construction must ensure its uniqueness

remote interface – specifies, which methods of the particular object can
be invoked remotely

Luděk Matyska · Distributed Systems · Spring 2024 39 / 57



Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)
Architecture III.

the remote objects can be accessed concurrently
the encapsulation allows objects to provide methods for protecting
themselves against incorrect accesses

e.g., synchronization primitives (condition variables, semaphores,
etc.)

RMI transaction semantics similar to the RPC ones
at-least-once, at-most-once, exactly-once, and maybe semantics

data encoding services:
stubs use Object Serialization to marshal the arguments

object arguments’ values are rendered into a stream of bytes that
can be transmitted over a network
⇒ the arguments must be primitive types or objects that
implement Serializable interface

parameters passing:
local objects passed by value
remote objects passed by reference

Luděk Matyska · Distributed Systems · Spring 2024 40 / 57



Middleware Common Object Request Broker Architecture (CORBA)

Common Object Request Broker Architecture
(CORBA)

an industry standard developed by the OMG (Object Management Group
– a consortium of more than 700 companies) to aid in distributed
objects programming

OMG was established in 1988
initial CORBA specification came out in 1992

but significant revisions have taken place from that time

provides a platform-independent and language-independent
architecture (framework) for writing distributed, object-oriented
applications

i.e., application programs can communicate without restrictions to:
programming languages, hardware platforms, software platforms, networks they
communicate over

but CORBA is just a specification for creating and using distributed
objects; it is not a piece of software or a programming language

several implementations of the CORBA standard exist (e.g., IBM’s SOM and DSOM
architectures)

Luděk Matyska · Distributed Systems · Spring 2024 41 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
CORBA is composed of five major components:

Object Request Broker (ORB)
Interface Definition Language (IDL)
Dynamic Invocation Interface (DII)
Interface Repositories (IR)
Object Adapters (OA)

Luděk Matyska · Distributed Systems · Spring 2024 42 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Object Request Broker (ORB)

the heart of CORBA
introduced as a part of OMG’s Object Management Architecture (OMA), which the CORBA is
based on

a distributed service that implements all the requests to the remote
object(s)

it locates the remote object on the network, communicates the request to the object, waits for
the results and (when available) communicates those results back to the client

implements location transparency
exactly the same request mechanism is used regardless of where the object is located

might be in the same process with the client or across the planet

implements programming language independence
the client issuing a request can be written in a different programming language from the
implementation of the CORBA object

both the client and the object implementation are isolated from the ORB by
an IDL interface
Internet Inter-ORB Protocol (IIOP) – the standard communication protocol
between ORBs

Luděk Matyska · Distributed Systems · Spring 2024 43 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Object Request Broker (ORB) II.

Luděk Matyska · Distributed Systems · Spring 2024 44 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL)

as with RMI, CORBA objects have to be specified with interfaces
interface ≈ a contract between the client (code using a object) and the
server (code implementing the object)

indicates a set of operations the object supports and how they should be invoked (but
NOT how they are implemented)

defines modules, interfaces, types, attributes, exceptions, and
method signatures

uses same lexical rules as C++
with additional keywords to support distribution (e.g. interface, any, attribute,
in, out, inout, readonly, raises)

defines language bindings for many different programming
languages (e.g., C/C++, Java, etc.)

via language mappings, the IDL translates to different constructs in
the different implementation languages
it allows an object implementor to choose the appropriate
programming language for the object, and
it allows the developer of the client to choose the appropriate and
possibly different programming language for the client

Luděk Matyska · Distributed Systems · Spring 2024 45 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL) example:
module StockObjects {

struct Quote {
string symbol;
long at_time;
double price;
long volume;

};
exception Unknown{};
interface Stock {

// Returns the current stock quote.
Quote get_quote() raises(Unknown);
// Sets the current stock quote.
void set_quote(in Quote stock_quote);
// // Provides the stock description, e.g. company name.
readonly attribute string description;

};
interface StockFactory {

Stock create_stock(in string symbol, in string description);
};

};Luděk Matyska · Distributed Systems · Spring 2024 46 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL) III. – Stubs and Skeletons
IDL compiler automatically compiles the IDL into client stubs and
object skeletons:

Luděk Matyska · Distributed Systems · Spring 2024 47 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL) IV. – Development Process
Using IDL

Luděk Matyska · Distributed Systems · Spring 2024 48 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
DII & DSI
Dynamic Invocation Interface (DII)

CORBA supports both the dynamic and the static invocation
interfaces

static invocation interfaces are determined at compile time
dynamic interfaces allow client applications to use server objects
without knowing the type of those objects at compile time

DII – an API which allows dynamic construction of CORBA object
invocations

Dynamic Skeleton Interface (DSI)
DSI is the server side’s analogue to the client side’s DII

allows an ORB to deliver requests to an object implementation
that does not have compile-time knowledge of the type of the
object it is implementing

Luděk Matyska · Distributed Systems · Spring 2024 49 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Repository (IR)

a runtime component used to dynamically obtain information on
IDL types (e.g. object interfaces)

using the IR, a client should be able to locate an object that is
unknown at compile time, find information about its interface, and
build a request to be forwarded through the ORB
this kind of information is necessary when a client wants to use
the DII to construct requests dynamically

Luděk Matyska · Distributed Systems · Spring 2024 50 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Object Adapters (OAs)

the interface between the ORB and the server process
OAs listen for client connections/requests and map the inbound
requests to the desired target object instance

provide an API that object implementations use for:
generation and interpretation of object references
method invocation
security of interactions
object and implementation activation and deactivation
mapping object references to the corresponding object
implementations
registration of implementations

two basic kinds of OAs:
basic object adapter (BOA) – leaves many features unsupported,
requiring proprietary extensions
portable object adapter (POA) – intended to support multiple ORB
implementations (of different vendors), allow persistent objects, etc.

Luděk Matyska · Distributed Systems · Spring 2024 51 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Object & Object Reference
CORBA Objects are fully encapsulated

accessed through well-defined interfaces only
interfaces & implementations are totally separate

for one interface, multiple implementations possible
one implementation may be supporting multiple interfaces

CORBA Object Reference is the distributed computing equivalent of a
pointer

CORBA defines the Interoperable Object Reference (IOR)
an IOR contains a fixed object key, containing:

the object’s fully qualified interface name (repository ID)
user-defined data for the instance identifier

can also contain transient information:
the host and port of its server, metadata about the server’s ORB (for potential
optimizations), etc.

⇒ the IOR uniquely identifies one object instance

Luděk Matyska · Distributed Systems · Spring 2024 52 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Services

CORBA Services (COS)
the OMG has defined a set of Common Object Services to support
the integration and interoperation of distributed objects

= frequently used components needed for building robust
applications
typically supplied by vendors
OMG defines interfaces to services to ensure interoperability

Luděk Matyska · Distributed Systems · Spring 2024 53 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Services
Popular Services Example

Luděk Matyska · Distributed Systems · Spring 2024 54 / 57



Middleware Common Object Request Broker Architecture (CORBA)

CORBA Architecture Summary

Luděk Matyska · Distributed Systems · Spring 2024 55 / 57



Service Oriented Architecture (SAO)

Lecture overview

Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)

Web Services

Luděk Matyska · Distributed Systems · Spring 2024 56 / 57



Web Services

Lecture overview

Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)

Web Services

Luděk Matyska · Distributed Systems · Spring 2024 57 / 57


	Lecture overview
	Distributed Systems
	Key characteristics
	Challenges and Issues
	Distributed System Architectures
	Inter-process Communication

	Middleware
	Remote Procedure Calls (RPC)
	Remote Method Invocation (RMI)
	Common Object Request Broker Architecture (CORBA)

	Service Oriented Architecture (SAO)
	Web Services

