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Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems I.

single machine systems
failures are all or nothing

OS crash, disk failures, etc.

distributed systems: multiple independent nodes
partial failures are also possible (some nodes fail)
probability of failure grows with number of independent
components (nodes) in the system

fault tolerance: system should provide services despite faults
transient faults
intermittent faults
permanent faults
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Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems I.
Failure Types
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Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems II.

handling faulty processes: through redundancy
organize several processes into a group

all processes perform the same computation
all messages are sent to all the members of the particular group
majority needs to agree on results of a computation
ideally, multiple independent implementations of the application
are desirable (to prevent identical bugs)

use process groups to organize such processes
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Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems III.

Figure: Flat Groups vs. Hierarchical Groups.
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Issues Examples Fault Tolerance in Distributed Systems

Availability in DS

Availability is the uptime. i.e. fraction of time the systems works
reliably
It’s usually expressed in nines

Two nines = 99% up = down 3.7 days/year
Three nines = 99.9% up = down 8.8 hours/year
Four nines = 99.99% up = down 53 minutes/year
Five nines = 99.999% up = down 5.3 minutes/year

Related item is Service/Level Objective
99.9% of requests are served in less than 200 ms per day
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Issues Examples Fault Tolerance in Distributed Systems

Failure detectors

Failure detector: algorithm that detects whether another node is
faulty
Perfect failure detector: labes a node as faulty if and only if it
has crashed
Impossible without additional constraints (synchronicity, ...)
Typical implementation

Heartbeats and timeouts
If a request is not answered within a specified amount of time, it
is labeled as crashed

Not a prfect solution
no way to distinguish between crashed and unresponsive
(overloaded) node, lost or delayed message,
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Fault Tolerance in DSs – Agreement in Faulty
Systems

How should processes agree on results of a computation?
K-fault tolerant: system can survive k faults and yet function

assume processes fail silently
⇒ need (k + 1) redundancy to tolerant k faults

Byzantine failures: processes run even if sick
produce erroneous, random or malicious replies
byzantine failures are most difficult to deal with
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Fault Tolerance in DSs – Agreement in Faulty
Systems

Two Generals Problem:

Two generals are in front of a city at opposite sides

If only one general attacks, it will be defeated
If both generals attack, the city will be defeated
They need to agree whether to attack and when

They can communitace through messengers only

messengers canm be captured
Regardless of the number of messages, it is not possible for the
generals to be certain of the other general decision
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Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems

Byzantine Generals Problem:

Similar setup, but there may be more generals
there is no messengers’ capture, all messages are eventually delivered
they may be slow

Byzantine means that some generals may not be trusthworty/traitors (they lie)

we seek an agreement between all honest generals
theory shows that the problem is solvable only if at most one third are traitors
to tolerate n traitors, there must be at least 3n + 1 generals

the problem is nontrivial even if messengers are totally reliable
with unreliable messengers, the problem is very complex
Fischer, Lynch, Paterson: in asynchronous systems, it is impossible to reach a consensus in a
finite amount of time
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Fault Tolerance in DSs – Agreement in Faulty
Systems
Formal definition of the agreement problem in DSs:

let’s have a set of distributed processes with initial states ∈ 0, 1
the goal: all the processes have to agree on the same value

additional requirement: it must be possible to agree on both 0 or
1 states

basic assumptions:
system is asynchronous

no bounds on processes’ execution delays exist
no bounds on messages’ delivery delay exist
there are no synchronized clocks

no communication failures – every process can communicate with
its neighbors
processes fail by crashing – we do not consider byzantine failures
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Fault Tolerance in DSs – Agreement in Faulty
Systems

Formal definition of the agreement problem in DSs: cont’d.
implications:
⇒ there is no deterministic algorithm which resolves the consensus

problem in an asynchronous system with processes, which may
fail
because it is impossible to distinguish the cases:

a process does not react, because it has failed
a process does not react, because it is slow

practically overcomed by establishing timeouts and by
ignoring/killing too slow processes

timeouts used in so-called Failure Detectors (see later)

Luděk Matyska · Distributed Systems · Spring 2024 13 / 49



Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast

if there was a proper type of fault-tolerant broadcast, the agreement
problem would be solvable
various types of broadcasts:

reliable broadcast
FIFO broadcast
causal broadcast
atomic broadcast – the broadcast, which would solve the
agreement problem in asynchronous systems
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Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast – Reliable Broadcast

basic features:
Validity – if a correct process broadcasts m, then it eventually delivers m
Agreement – if a correct process delivers m, then all correct processes
eventually deliver m
(Uniform) Integrity – m is delivered by a process at most once, and only
if it was previously broadcasted

possible to implement using send/receive primitives:
the process p sending the broadcast message marks the message by its
identifier and sequence number

and sends it to all its neighbors

once a message is received:
if the message has not been previously received (based in sender’s ID and sequence
number), the message is delivered
if the particular process is not message’s sender, it delivers it to all its neighbors
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Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast – FIFO Broadcast

the reliable broadcast cannot assure the messages’ ordering
it is possible to receive a subsequent message (from the sender’s
view) before the previous one is received

FIFO broadcast: the messages from a single sender have to be
delivered in the same order as they were sent
FIFO broadcast = Reliable broadcast + FIFO ordering

if a process p broadcasts a message m before it broadcasts a
message m′, then no correct process delivers m′ unless it has
previously delivered m
broadcastp(m) → broadcastp(m′) ⇒ deliverq(m) → deliverq(m′)

a simple extension of the reliable broadcast
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Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast – Causal Broadcast

the FIFO broadcast is still not sufficient: it is possible to receive
a message from a third party, which is a reaction to a particular
message before receiving that particular message

⇒ Causal broadcast
Causal broadcast = Reliable broadcast + causal ordering

if the broadcast of a message m happens before the broadcast of a
message m′, then no correct process delivers m′ unless it has
previously delivered m
broadcastp(m) → broadcastq(m′) ⇒ deliverr(m) → deliverr(m′)

can be implemented as an extension of the FIFO broadcast
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Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast – Atomic Broadcast

even the causal broadcast is still not sufficient: sometimes, it is
necessary to guarantee the proper in-order delivery of all the
replicas

two bank offices: one of them receives the information about adding
an interest before adding a particular amount of money to the account,
the second one receives these messages contrariwise

⇒ inconsistency

⇒ Atomic broadcast

Atomic broadcast = Reliable broadcast + total ordering
if correct processes p and q both deliver messages m, m′, then p delivers
m before m′ if and only if q delivers m before m′

deliverp(m) → deliverp(m′) ⇒ deliverq(m) → deliverq(m′)

does not exist in asynchronous systems
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Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast – Timed Reliable Broadcast

a way to practical solution
introduces an upper limit (time), before which every message has
to be delivered
Timed Reliable broadcast = Reliable broadcast + timeliness

there is a known constant ∆ such that if a message is
broadcasted at real-time t, then no correct (any) process delivers
m after real-time t +∆

feasible in asynchronous systems
A kind of “approximation” of atomic broadcast
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Fault Tolerance in DSs – Agreement in Faulty
Systems – Failure Detectors I.

impossibility of consensus caused by inability to detect slow
process and a failed process

synchronous systems: let’s use timeouts to determine whether a
process has crashed
⇒ Failure Detectors

Failure Detectors (FDs):
a distributed oracle that provides hints about the operational status
of processes (which processes had failed)

FDs communicate via atomic/time reliable broadcast

every process maintains its own FD
and asks just it to determine, whether a process had failed

however:
hints may be incorrect
FD may give different hints to different processes
FD may change its mind (over & over) about the operational status of a
process
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Fault Tolerance in DSs – Agreement in Faulty
Systems – Failure Detectors II.
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Fault Tolerance in DSs – Agreement in Faulty
Systems
Perfect Failure Detector:

properties:
Eventual Strong Completeness – eventually every process that has
crashed is permanently suspected by all non-crashed processes
Eventual Strong Accuracy – no correct process is ever suspected

hard to implement
is perfect failure detection necessary for consensus? No.

⇒ weaker Failure Detector
weaker Failure Detector:

properties:
Strong Completeness – there is a time after which every faulty process
is suspected by every correct process
Eventual Strong Accuracy – there is a time after which no correct
process is suspected

can be used to solve the consensus
this is the weakest FD that can be used to solve the consensus
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Scheduling/Load-balancing in Distributed Systems
For concurrent execution of interacting processes:

communication and synchronization between processes are the
two essential system components

Before the processes can execute, they need to be:
scheduled and
allocated with resources

Why scheduling in distributed systems is of special interest?
because of the issues that are different from those in traditional
multiprocessor systems:

the communication overhead is significant
the effect of underlying architecture cannot be ignored
the dynamic behaviour of the system must be addressed

local scheduling (on each node) + global scheduling
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Scheduling/Load-balancing in Distributed Systems
let’s have a pool of jobs

there are some inter-dependencies among them
and a set of nodes (processors) able to reciprocally communicate

Load-balancing

The term load-balancing means assigning the jobs to the processors in
the way, which minimizes the time/communication overhead necessary
to compute them.

load-balancing – divides the jobs among the processors
scheduling – defines execution order of the jobs (on each
processor)

load-balancing and planning are tightly-coupled (synonyms in DSs)
objectives:

enhance overall system performance metric
process completion time and processor utilization

location and performance transparency
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Scheduling/Load-balancing in Distributed Systems
the scheduling/load-balancing task can be represented using graph
theory:

the pool of N jobs with dependencies can be described as a graph
G(V ,U), where

the nodes represent the jobs (processes)
the edges represent the dependencies among the jobs/processes (e.g., an edge from i
to j requires that the process i has to complete before j can start executing)

the graph G has to be split into p parts, so that:
N = N1 ∪ N2 ∪ · · · ∪ Np

which satisfy the condition, that |Ni| ≈
|N|
p , where

|Ni| is the number of jobs assigned to the processor i, and
p is the number of processors, and
the number/cost of the edges connecting the parts is minimal

the objectives:
uniform jobs’ load-balancing
minimizing the communication (the minimal number of edges among the parts)

the splitting problem is NP-complete
the heuristic approaches have to be used
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Scheduling/Load-balancing in Distributed Systems
An illustration

Figure: An illustration of splitting 4 jobs onto 2 processors.
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Scheduling/Load-balancing in Distributed Systems

the “proper” approach to the scheduling/load-balancing problem
depends on the following criteria:

jobs’ cost
dependencies among the jobs
jobs’ locality
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Scheduling/Load-balancing in Distributed Systems
Jobs’ Cost

the job’s cost may be known:
before the whole problem set’s execution
during problem’s execution, but before the particular job’s
execution
just after the particular job finishes

cost’s variability – all the jobs may have (more or less) the same
cost or the costs may differ

the problem classes based on jobs’ cost:
all the jobs have the same cost: easy
the costs are variable, but, known: more complex
the costs are unknown in advance: the most complex
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Scheduling/Load-balancing in Distributed Systems
Dependencies Among the Jobs

is the order of jobs’ execution important?
the dependencies among the jobs may be known:

before the whole problem set’s execution
during problem’s execution, but before the particular job’s
execution
are fully dynamic

the problem classes based on jobs’ dependencies:
the jobs are fully independent on each other: easy
the dependencies are known or predictable: more complex

flooding
in-trees, out-trees (balanced or unbalanced)
generic oriented trees (DAG)

the dependencies dynamically change: the most complex
e.g., searching/lookup problems
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Scheduling/Load-balancing in Distributed Systems
Locality

communicate all the jobs in the same/similar way?
is it suitable/necessary to execute some jobs “close” to each
other?
when the job’s communication dependencies are known?

the problem classes based on jobs’ locality:
the jobs do not communicate (at most during initialization): easy
the communications are known/predictable: more complex

regular (e.g., a grid) or irregular
the communications are unknown in advance: the most complex

e.g., a discrete events’ simulation
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Scheduling/Load-balancing in DSs – Solving
Methods

in general, the “proper” solving method depends on the time,
when the particular information is known
basic solving algorithms’ classes:

static – offline algorithms
semi-static – hybrid approaches
dynamic – online algorithms

some (but not all) variants:
static load-balancing
semi-static load-balancing
self-scheduling
distributed queues
DAG planning
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Scheduling/Load-balancing in DSs – Solving
Methods
Semi-static load-balancing

suitable for problem sets with slow changes in parameters, and
with locality importance
iterative approach

uses static algorithm
the result (from the static algorithm) is used for several steps
(slight unbalance is accepted)
after the steps, the problem set is recalculated with the static
algorithm again

often used for:
particle simulation
calculations of slowly-changing grids (but in a different sense
than in the previous lectures)
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Scheduling/Load-balancing in DSs – Solving
Methods
Self-scheduling I.

a centralized pool of jobs
idle processors pick the jobs from the pool
new (sub)jobs are added to the pool

+ ease of implementation
suitable for:

a set of independent jobs
jobs with unknown costs
jobs where locality does not matter

unsuitable for too small jobs – due to the communication overhead
⇒ coupling jobs into bulks

fixed size
controlled coupling
tapering
weighted distribution
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Scheduling/Load-balancing in DSs – Solving
Methods
Self-scheduling II. – Fixed size & Controlled coupling
Fixed size

typical offline algorithm
requires much information (number and cost of each job, . . . )
it is possible to find the optimal solution
theoretically important, not suitable for practical solutions

Controlled coupling
uses bigger bulks in the beginning of the execution, smaller bulks
in the end of the execution

lower overhead in the beginning, finer coupling in the end
the bulk’s size is computed as: Ki = ⌈ Ri

p ⌉
where:

Ri . . . the number of remaining jobs
p . . . the number of processors
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Scheduling/Load-balancing in DSs – Solving
Methods
Self-scheduling II. – Tapering & Weighted distribution
Tapering

analogical to the Controlled coupling, but the bulks’ size is
further a function of jobs’ variation
uses historical information

low variance ⇒ bigger bulks
high variance ⇒ smaller bulks

Weighted distribution
considers the nodes’ computational power
suitable for heterogenous systems
uses historical information as well
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Scheduling/Load-balancing in DSs – Solving
Methods
Distributed Queues

≈ self-scheduling for distributed memory
instead of a centralized pool, a queue on each node is used
(per-processor queues)
suitable for:

distributed systems, where the locality does not matter
for both static and dynamic dependencies
for unknown costs

an example: diffuse approach
in every step, the cost of jobs remaining on each processor is
computed
processors exchange this information and perform the balancing
locality must not be important
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Scheduling/Load-balancing in DSs – Solving
Methods
Centralised Pool vs. Distributed Queues

Figure: Centralised Pool (left) vs. Distributed Queues (right).
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Scheduling/Load-balancing in DSs – Solving
Methods
DAG Planning

DAG Planning
another graph model

the nodes represent the jobs (possibly weighted)
the edges represent the dependencies and/or the communication
(may be also weighted)

e.g., suitable for digital signal processing
basic strategy – divide the DAG so that the communication and
the processors’ occupation (time) is minimized

NP-complete problem
takes the dependencies among the jobs into account
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Scheduling/Load-balancing in DSs – Design Issues I.
When the scheduling/load-balancing is necessary?

for middle-loaded systems
lowly-loaded systems – rarely job waiting (there’s always an idle
processor)
highly-loaded systems – little benefit (the load-balancing cannot
help)

What is the performance metric?
mean response time

What is the measure of load?
must be easy to measure
must reflect performance improvement
example: queue lengths at CPU, CPU utilization
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Scheduling/Load-balancing in DSs – Design Issues I.
Types of policies:

static (decisions hardwired into system), dynamic (uses load
information), adaptive (policy varies according to load)

Policies:
Transfer policy: when to transfer a process?

threshold-based policies are common and easy
Selection policy: which process to transfer?

prefer new processes
transfer cost should be small compared to execution cost

⇒ select processes with long execution times
Location policy: where to transfer the process?

polling, random, nearest neighbor, etc.
Information policy: when and from where?

demand driven (only a sender/receiver may ask for), time-driven
(periodic), state-change-driven (send update if load changes)
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Scheduling/Load-balancing in DSs – Design Issues II.
Sender-initiated Policy

Transfer policy

Selection policy: newly arrived process
Location policy: three variations

Random – may generate lots of transfers
⇒ necessary to limit max transfers

Threshold – probe n nodes sequentially
transfer to the first node below the threshold, if none, keep job

Shortest – poll Np nodes in parallel
choose least loaded node below T
if none, keep the job

Luděk Matyska · Distributed Systems · Spring 2024 41 / 49



Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues II.
Receiver-initiated Policy

Transfer policy: if departing process causes load < T , find a
process from elsewhere
Selection policy: newly arrived or partially executed process
Location policy:

Threshold – probe up to Np other nodes sequentially
transfer from first one above the threshold; if none, do
nothing

Shortest – poll n nodes in parallel
choose the node with heaviest load above T
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Scheduling/Load-balancing in DSs – Design Issues II.
Symmetric Policy

combines previous two policies without change
nodes act as both senders and receivers

uses average load as the threshold
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Scheduling/Load-balancing in DSs – Case study
V-System (Stanford)

state-change driven information policy
significant change in CPU/memory utilization is broadcast to all
other nodes

M least loaded nodes are receivers, others are senders
sender-initiated with new job selection policy
Location policy:

probe random receiver
if still receiver (below the threshold), transfer the job
otherwise try another
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Scheduling/Load-balancing in DSs – Case study
Sprite (Berkeley) I.

Centralized information policy: coordinator keeps info
state-change driven information policy
Receiver: workstation with no keyboard/mouse activity for the
defined time period (30 seconds) and below the limit (active
processes < number of processors)

Selection policy: manually done by user ⇒ workstation becomes
sender
Location policy: sender queries coordinator
the workstation with the foreign process becomes sender if user
becomes active
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Scheduling/Load-balancing in DSs – Case study
Sprite (Berkeley) II.

Sprite process migration:
facilitated by the Sprite file system
state transfer:

swap everything out
send page tables and file descriptors to the receiver
create/establish the process on the receiver and load the
necessary pages
pass the control

the only problem: communication-dependencies
solution: redirect the communication from the
workstation to the receiver
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Scheduling/Load-balancing in DSs
Code and Process Migration

key reasons: performance and flexibility
flexibility:

dynamic configuration of distributed system
clients don’t need preinstalled software (download on demand)

process migration (strong mobility)
process = code + data + stack
examples: Condor, DQS

code migration (weak mobility)
transferred program always starts from its initial state

migration in heterogeneous systems:
only weak mobility is supported in common systems (recompile
code, no run time information)
the virtual machines may be used: interpreters (scripts) or
intermediate code (Java)
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Conclusion

Distributed Systems – Further Information
FI courses:

PA150: Advanced Operating Sytems Concepts (doc. Staudek)
PA053: Distributed Systems and Middleware (doc. Tůma)
PA039: Supercomputer Architecture and Intensive Computations (prof.
Matyska)
PA177: High Performance Computing (LSU, prof. Sterling)
IV100: Parallel and distributed computations (doc. Královič)
IB109: Design and Implementation of Parallel Systems (dr. Barnat)
etc.

(Used) Literature:
W. Jia and W. Zhou. Distributed Network Systems: From concepts to
implementations. Springer, 2005.
A. S. Tanenbaum and M. V. Steen. Distributed Systems: Principles and
paradigms. Pearson Prencite Hall, 2007.
G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems:
Concepts and design. Addison-Wesley publishers, 2001.
Z. Tari and O. Bukhres. Fundamentals of Distributed Object Systems:
The CORBA perspective. John Wiley & Sons, 2001.
etc.
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